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Abstract—Molecular property prediction plays a fundamental
role in AI-aided drug discovery to identify candidate molecules,
which is also essentially a few-shot problem due to lack of labeled
data. In this paper, we propose Property-Aware Relation networks
(PAR) to handle this problem. We first introduce a property-aware
molecular encoder to transform the generic molecular embeddings
to property-aware ones. Then, we design a query-dependent rela-
tion graph learning module to estimate molecular relation graph
and refine molecular embeddings w.r.t. the target property. Thus,
the facts that both property-related information and relationships
among molecules change across different properties are utilized
to better learn and propagate molecular embeddings. Generally,
PAR can be regarded as a combination of metric-based and
optimization-based few-shot learning method. We further extend
PAR to Transferable PAR (T-PAR) to handle the distribution shift,
which is common in drug discovery. The keys are joint sampling
and relation graph learning schemes, which simultaneously learn
molecular embeddings from both source and target domains. Ex-
tensive results on benchmark datasets show that PAR and T-PAR
consistently outperform existing methods on few-shot and trans-
ferable few-shot molecular property prediction tasks, respectively.
Besides, ablation and case studies are conducted to validate the
rationality of our designs in PAR and T-PAR.

Index Terms—Few-Shot learning, meta-learning, molecular
property prediction, transfer learning.

I. INTRODUCTION

DRUG discovery is an important biomedical task, which
targets at finding new potential medical compounds

with desired properties such as better absorption, distribution,
metabolism, and excretion (ADME), low toxicity and active
pharmacological activity [1], [2], [3]. It is recorded that drug
discovery takes more than 2 billion and at least 10 years in
average while the clinical success rate is around 10% [4], [5], [6].
To speed up this process, quantitative structure property/activity
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relationship (QSPR/QSAR) modeling uses machine learning
methods to establish the connection between molecular structure
and particular properties [7]. Predictive models can be leveraged
in virtual screening to discover potential molecules more effi-
ciently [8]. However, molecular property prediction (MPP) is
essentially a few-shot problem, which makes it hard to solve.
Only a small amount of candidate molecules can pass virtual
screening to be evaluated in the lead optimization stage of
drug discovery [9]. After a series of wet-lab experiments, most
candidates eventually fail to be a potential drug due to the lack
of any desired properties [7]. These together result in a limited
number of labeled data [10].

Few-shot learning (FSL) [11], [12] methods target at gen-
eralizing from a limited number of labeled data. The main-
stream methods can be roughly categorized into two types:
metric-based methods and optimization-based methods. Metric-
based methods target at learning an embedding space that can
be shared across different tasks, such as Prototypical Net-
works (ProtoNet) [13], Relation Network [14] and EPNet [15].
Optimization-based methods train a meta-learner that can be
quickly adapted to new tasks with limited labeled samples,
such as MAML [16], LEO [17] and MetaOptNet [18]. These
FSL methods have been widely applied in computer vision
and natural language processing, achieving good results. The
development of FSL methods makes it possible for machine
learning models to be utilized in scenarios where labels are rare
or hard to obtain.

As MPP is naturally a few-shot problem, FSL methods are
also developed to solve this problem [3], [8]. These methods
all first use graph-based molecular encoders, i.e., variants of
Graph Neural Networks (GNNs) [19], [20], [21], [22], to obtain
graph-level representation as the molecular embedding, then
develop FSL approaches that enable them to learn from a few
labeled molecules. Specifically, the pioneering IterRefLSTM [3]
adopts GCN [19] as the molecular encoder and adapts Matching
Networks [23] proposed for few-shot image classification to
handle few-shot MPP tasks. The recent Meta-MGNN [8] lever-
ages a GNN pretrained from large-scale self-supervised tasks as
molecular encoder [24] and uses MAML [16] as its FSL method.
Moreover, Meta-MGNN introduces additional self-supervised
tasks such as bond reconstruction and atom type prediction to
be jointly optimized with the MPP tasks.

However, the aforementioned methods neglect two key facts
in MPP. The first fact is that the same molecule shows different
properties in different property prediction tasks. This can be
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Fig. 1. Examples of relation graphs for the same molecules coexisting in two tasks of Tox21. Red (blue) edges mean the connected molecules are both active
(inactive) on the target property.

commonly observed in benchmark MPP datasets. As shown in
Fig. 1, Mol-2 from the Tox21 dataset [25] is active in SR-HSE
task while inactive in SR-MMP task. However, IterRefLSTM
and Meta-MGNN use graph-based molecular encoders to en-
code molecules regardless of target properties. The second
fact is that the relationships among molecules are important
and worth-learning. We can see that learning the relationships
among molecules will help us predict the property of molecules
from Fig. 1. However, existing works do not try to learn the
relationships among molecules.

To handle these problems, we propose Property-Aware Rela-
tion networks (PAR) which is compatible with existing graph-
based molecular encoders. In PAR, we design a property-aware
molecular encoder to integrate property-related information
into molecular embeddings. Moreover, we construct a query-
dependent relation graph for molecules which learns relation-
ships among different molecules to help the model predict the
property of query molecules. But considering that different parts
of PAR model represent information of different levels, we
propose a MAML-based meta-learning strategy with selective
update approach to separately capture the generic knowledge
shared across different tasks and those specific to each task.
PAR combines metric-based (query-dependent relation graph
learning) and optimization-based (MAML framework) few-shot
learning methods, absorbing the strengths of two kinds of
methods.

While PAR performs well in few-shot MPP, it is unable to
handle the distribution shift between training and test data,
which is also very common in practical AI-aided drug dis-
covery [26], [27]. For example, when a severe epidemic like
COVID-19 occurs, we need to handle a new target with unseen
data distribution and the performance of common few-shot MPP
methods will largely degrade. To tackle the distribution shift,
we first formulate the problem into transferable FSL setting
where we need to transfer knowledge from source domain
to target domain. Then, we propose Transferable Property-
Aware Relation Networks, i.e., T-PAR, for transferable few-shot
MPP. Based on PAR, T-PAR uses joint sampling strategy to
model molecules from source and target domain in the training
procedure together. Moreover, T-PAR extends joint relation
graph learning by putting molecules from source and target
domain into the same relation graph to model the cross domain
relationship.

We conduct extensive empirical studies on real MPP datasets.
Results show that PAR and T-PAR consistently outperform
the compared methods respectively. Further model analysis
shows PAR can obtain property-aware molecular embeddings
and model molecular relation graph properly. We also conduct
ablation studies that show the components in PAR and T-PAR
are all vital to their success.

Difference with Conference Version: This paper is an ex-
tension of a previous conference paper published in NeurIPS
2021 [28]. The differences are as follows:
� Related works: We add more introductions of GNNs (Sec-

tion II-A), FSL (Section II-B) and MPP (Section II-C).
� New problem setting: We introduce transferable few-shot

MPP problems (Section IV-A), which consider the distri-
bution shift between model training and testing in practical
drug discovery applications.

� New method: We extend PAR as T-PAR to handle transfer-
able few-shot MPP problems. The key is joint sampling
strategy (Section IV-B) and joint relation graph learn-
ing (Section IV-C).

� Experiments: For FSL setting, we add more baselines (Sec-
tion V-A2). For transferable FSL setting, we provide ex-
tensive experimental results to show that T-PAR (Sec-
tion V-B2) outperforms the others (including PAR) on
benchmark datasets. Finally, we conduct ablation study
to validate the design considerations of adjustable com-
ponents (Section V-B3 and V-B4) and provide case
study (Section V-B5) for T-PAR.

Notation: In the sequel, we denote vectors by lowercase
boldface, matrices by uppercase boldface, and sets by uppercase
calligraphic font. For a vector x, [x]i denotes the ith element of
x. For a matrix X, [X]i: denotes the vector on its ith row, [X]ij
denotes the (i, j)th element of X. The superscript (·)� denotes
the matrix transpose, the parenthesized superscript (·)(τ) denotes
the τ th iteration, ∇θf denotes taking gradient of function f
w.r.t θ.

II. RELATED WORKS

A. Graph Neural Networks (GNNs)

A graph neural network (GNN) can learn expressive node or
graph representation from the topological structure and associ-
ated features of a graph via neighborhood aggregation [19], [29],
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[30]. Consider a graph G = {V, E} with node feature h
(0)
v for

each node v ∈ V and edge feature bvu for each edge evu ∈ E
between nodes v, u. At the lth layer, GNN updates the node
embedding h

(τ)
v of node v as

h(τ)
v = UPDATE(τ)

(
h(τ−1)
v ,h(τ−1)

agg

)
, (1)

where h
(τ−1)
agg =AGGREGATE(τ)({(h(τ−1)

v ,h
(τ−1)
u ,bvu)|u ∈

H(v)}), andH(v) is a set of neighbors of v. After T iterations of
aggregation, the graph-level representationg forG is obtained as
g = READOUT({h(T )

v |v ∈ V}), where READOUT(·) function
aggregates all node embeddings into the graph embedding [21].

As the original graph can contain missing or noisy edges,
graph structure learning is proposed to refine graph structure
dynamically during learning node embeddings [31], [32], [33].
Generally, they iterate over two steps: (i) estimate adjacency
matrix (i.e., refining neighborhood u ∈ H(v)) which encodes
graph structure from current node embeddings; and (ii) apply
GNN on this updated graph to obtain new node embeddings.

B. Few-Shot Learning (FSL)

Few-shot learning (FSL) [12] is a type of machine learning
that aim at generalizing from a limited number of examples. Re-
cent years witness rapid development of FSL methods. They can
be roughly divided into categories, metric-based methods and
optimization-based methods. Metric-based methods [13], [14],
[15], [23], [34] target at learning a feature space and conduct
classification through calculating similarity among different
samples in that space. For example, ProtoNet [13] conducts clas-
sification for a sample by calculating its distance to each class
prototype in a learned embedding space. Relation Network [14]
additionally trains a deep non-linear distance-based model to
compare support and query samples. EPNet [15] proposes an
embedding propagation strategy to make feature representation
of samples smoother. Optimization-based methods [16], [17],
[18], [35] aim at finding a set of model parameters that can be
quickly adapted to new FSL tasks. For example, MAML [16]
trains a good initialized model from the base training set that can
adjust parameters to new tasks with a small number of gradient
steps. LEO [17] designs latent embeddings to encode model
parameters and adapts the embeddings through gradient steps for
different tasks. MetaOptNet [18] learns a feature representation
model that generalizes well across different novel classes on
linear classifiers. We elaborate MAML in the sequel, as it is
used to train the proposed model.

1) MAML and Its Variants: Model-Agnostic Meta-Learning
(MAML) [16] targets at learning a good initialization of a
classification model fΦ with parameters Φ, so that the model
can be quickly adapted to target task T0 using gradient descent.
The framework of MAML contains two key points. Firstly, the
parameter update of MAML is divided into inner loop update
and outer loop update. Inner loop update performs for a specific
training task Tω = {Sω,Qω} and uses the loss LSω

calculated
on the support set Sω in Tω . Outer loop update performs for all
the tasks in Z and uses the loss LQω

calculated on the query sets
Qω in these tasks. Secondly, the learning objective for outer loop

update should contain the adaptation form of model parameters
Φ in inner loop update.

Specifically, Φ can be adapted for task Tω in inner loop up-
date as follows Φω = Φ− α∇ΦLSω

(fΦ), where α is the inner
learning rate. Then, MAML leverages the few-shot classification
tasks in Z and proposes the following learning objective w.r.t.
Φ, i.e.,

min
Φ

∑
ω
LQω

(fΦω
) =

∑
ω
LQω

(fΦ−α∇ΦLSω (fΦ)),

which can still be optimized with gradient descent in outer loop
update. Due to the usefulness of MAML, many of its variants
have been proposed. For example, ANIL [36] only retains the
update of task-specific head layer in inner loop update to simplify
MAML. UNICORN-MAML [37] increases the number of gradi-
ent steps in inner loop update and proposes an approach to tackle
with class permutation in few-shot classification problems.

2) Transferable FSL: Most existing FSL methods assume
that training tasks and target tasks follow the same distribution.
However, target task usually has a distribution shift compared
with training tasks in real-world applications, which calls for
transferable FSL methods. Current transferable FSL methods
mainly adopt two problem settings. The first type is called
few-shot cross domain generalization which does not have
any target domain data in training step. MLDG [38] proposes
a meta-learning technique that synthesizes virtual testing do-
mains within each mini-batch to achieve domain generalization.
FT [39] introduces feature-wise transformation to simulate var-
ious feature distributions in unseen target domain. While the
second type provides a few labeled samples in target domain
during training. DAPN [40] proposes a metric-based transfer
learning method for few-shot image classification. It obtains
superior performance compared with other transfer learning
methods (e.g. ADDA [41] and CDAN [42]) in this setting due to
its specialized design for limited target domain training data.
Building upon the principles of MAML, BOIL introduces a
novel approach that updates the model’s body while freezing
the head in the inner loop update. This strategy leverages the
representation changes across various tasks, making it applica-
ble to the transferable FSL problem setting we explore in this
work.

C. Molecular Property Prediction (MPP)

Molecular property prediction (MPP) attempts to establish
connection between molecular structures and some particular
properties [7], [43], [44]. There are many classical machine
learning based methods that try to tackle with the MPP problems.
ESOL [45] describes molecules by their basic chemical signa-
tures and use linear regression to predict the molecular property.
Molecular Graph Networks [46] turns a molecular graph into
an adaptive molecular composite descriptor and use a simple
neural network to get a scalar output. Extended-Connectivity
Fingerprints [47] proposes topological fingerprints for molecu-
lar characterization and the prediction can be obtained through
different kinds of predictor from the fingerprints.

The above methods provide a framework for the machine
learning based molecular property prediction methods, which
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contains two parts, a molecular encoder that encode a molecule
into a vector, and a classifier that predict the property. How-
ever, they do not produce satisfactory results because of their
drawbacks in two aspects. Firstly, these molecular encoders are
simple and cannot exploit the graph structure of molecules.
Secondly, they neglect the lack of labeled data in practical
MPP problems [10], which will degrade the accuracy of ma-
chine learning models. Recently, machine learning based MPP
methods gradually outperform the conventional ab initio com-
putations [48], [49] as they make improvements upon the two
drawbacks, which will be introduced in the following sections.

1) GNN-Based Molecular Encoder: Through the improve-
ment of molecular encoders, better molecular representations
can be obtained, which will enhance the accuracy of property
prediction. Recently, graph-based molecular encoders are popu-
larly used and obtain the state-of-the-art performance [49]. UG-
RNN [50] is the first graph-based neural networks used in the
MPP problems, which views a molecule as an undirected graph
and propagates messages among different atoms by recursive
neural network (RNN). Different kinds of GNNs with strong rep-
resentation ability of graphs are also widely applied as molecular
encoders. Graph convolutional networks (GCN) [19] is used in
neural graph fingerprints [51] to better encode molecular graphs.
Attentive FP [52] adopts the graph attention network (GAT) [22]
to capture graph structures and achieves outstanding results.
Message passing neural networks (MPNN) [29] integrates dif-
ferent kinds of molecular encoders and introduces a framework
that leverage both node and edge features in molecular graphs.

2) Learning From a Few Labeled Data: Lack of labeled
data is a ubiquitous problem in practical MPP applications.
Classically, transfer learning [53] can handle the lack of labeled
data through domain adaptation, which is a type of machine
learning that targets at improving the learning of target domain
knowledge using knowledge from the source domain. Transfer
learning methods are applied in MPP problems in recent years.
For example, ChemNet [54] trains a model on source domain and
uses transfer learning methods to fine-tune the model on target
domain tasks with few labeled data; DTCR [2] proposes a model
using GCN and adversarial domain adaptation network [41] to
transfer the knowledge across domains.

Recently, pretraining [55] techniques are proposed to tackle
with the lack of labeled data, which can obtain better initialized
model. Unlike the above transfer learning methods, these meth-
ods are able to generalize to new tasks. SMILES-BERT [56] pre-
trains the model with a large scale of unlabeled dataset through a
masked SMILES recovery task that can be quickly generalized
to new tasks. The GNN-based molecular encoder can also be
pretrained for a better parameter initialization. Pre-GNN [24]
implements self-supervised methods for pretrained GNN that
can capture the local and global representations simultaneously.
GROVER [9] integrates GNN into the Transformer-style archi-
tecture to pretrain a class of more expressive molecular encoders.
Motif-based graph self-supervised learning method [57] designs
motif-level self-supervised tasks to capture rich information in
molecular subgraphs in the pretraining process.

As discussed in Section II-B, FSL methods are promising
to learn from a few labeled samples and generalize from base

dataset to new tasks. They have been recently introduced in
MPP. IterRefLSTM [3] and Meta-MGNN [8] are two exemplar
works in this direction. Specifically, IterRefLSTM modifies the
Matching Networks to a molecular property predictor, while
Meta-MGNN implements MAML as the few-shot predictor to
obtain the property prediction. Besides, pretraining can be used
to warm-start GNN-based molecular encoder in FSL methods as
done in Meta-MGNN [8], which can help further boost learning
performance.

III. PROPERTY-AWARE RELATION NETWORKS

In this section, we introduce PAR (Fig. 2), Property-Aware
Relation networks, for few-shot MPP tasks. We first provide
the problem formulation (Section III-A). Then, we present the
key components of PAR: (i) property-aware molecular encoder
(Fig. 2(a)) which is specially designed to obtain property-aware
molecular embedding for each molecule (Section III-B), and (ii)
query-dependent relation graph learning (Fig. 2(b)) which learns
a query-dependent relation graph among molecules to model
molecular relationship w.r.t. the target property and propagate
information among related molecules (Section III-C). We adopt
a meta-learning strategy with selective update approach to op-
timize PAR (Section III-D). Finally, we conclude this section
with the complete algorithm (Section III-E).

A. Problem Formulation

In this paper, we focus on classification tasks within MPP,
the label of a molecule can only be ”active” or ”inactive”
corresponding to a particular property. The discussion on ap-
plying the proposed method for regression tasks are provided in
Appendix A. Following [3], [8], we take MPP as a 2-wayK-shot
binary classification problem. In this case, we are given a 2-way
K-shot classification task T0, in which there is a support set
S0 = {(x0,i, y0,i)}2×K

i=1 and a query setQ0 = {(x0,j , y0,j)}Mj=1.
The support set contains K samples from each of 2 classes.
The query set contains M samples, whose labels are only
used to test the classification model. The number of labeled
data in the support set is usually too small to produce a good
classification model, so we are given another auxiliary base
training set D with sufficient numbers of labeled samples. The
base training set has a disjoint label space from the support and
query set. D is used to sample a set of 2-way K-shot tasks
Z = {Tω} to train the model in the training stage. Each task Tω
contains a support set Sω = {(xω,i, yω,i)}2×K

i=1 and a query set
Qω = {(xω,j , yω,j)}Mj=1. The target is to classify molecules in
query set Q0 in target task accurately.

B. Property-Aware Molecular Encoder

As introduced in Section II-C1, graph-based molecular en-
coders can obtain good molecular embeddings. By learning from
large-scale tasks, they can capture generic information shared by
molecules [9], [24]. Thus, we first use a graph-based molecular
encoder such as GIN [21] and Pre-GNN [24] to extract molecular
embeddings gω,i ∈ Rdg

of length dg for xω,i ∈ Sω ∪ Qω. The
parameter of this graph-based molecular encoder is denoted as
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Fig. 2. The architecture of the proposed PAR, where we plot a 2-way 2-shot task with 2 query molecules from Tox21. PAR is optimized over a set of tasks. Within
each task Tω , the modules with dotted lines are fine-tuned in inner loop update while those with solid lines are fixed. The PAR model can be mainly divided into
two parts: (a) Property-aware molecular encoder: Each molecule xω,i will first be represented as gω,i using graph-based molecular encoder, then transformed to
pω,i by self-attention step with class prototypes; and (b) Query dependent relation graph learning: The property-aware molecular embeddings further iteratively
update on the query-dependent relation graph as hω,m,p, which is taken as the final molecular embedding and used for class prediction.

Wg . However, these methods cannot capture property-aware
information. When learning across tasks, the same molecule can
be evaluated for multiple properties. This leads to a one-to-many
relationship between a molecule and different properties (as
shown in Fig. 1), which makes few-shot molecular property
prediction hard.

Thus, we are motivated to capture information of the
target property of Tω during embedding learning. Specifi-
cally, we design a property-aware molecular encoder to trans-
form the generic molecular embeddings to a property-aware
space. Let Sc

ω = {(xω,i, yω,i)|(xω,i, yω,i) ∈ Sω and yω,i = c}.
We first compute the class prototype ccω for class c ∈ {0, 1} as

ccω =
1

|Sc
ω|

∑
(xω,i,yω,i)∈Sc

ω

gω,i. (2)

Then, we take these class prototypes as the context information
of task Tω , and leverage them to obtain contextualized molecular
embedding bω,i:

bω,i = [softmax(Cω,iC
�
ω,i/

√
dg)Cω,i]1:, (3)

where C�
ω,i = [gω,i, c

0
ω, c

1
ω] ∈ Rdg×3 and [·]l: extracts the lth

row vector which corresponds to xω,i. Here bω,i is computed
using scaled dot-product self-attention [58], such that each gω,i

can be compared with class prototypes in a dimension-wise
manner. Finally, the property-aware molecular embedding pω,i

is obtained as

pω,i = MLPWp
(concat[gω,i,bω,i]). (4)

Here, MLPWp
denotes multilayer perceptron (MLP) parameter-

ized byWp, which is used to find a lower dimensional space that
is more relevant to the target property of Tω . The contextualized
pω,i is more predictive of the target property.

C. Query-Dependent Relation Graph Learning

Apart from property-aware information, the relationship
among molecules also changes across properties. As shown in
Fig. 1, two molecules with a shared property can be different
from each other on another property [1], [59], [60]. Therefore,
we further propose a query-dependent relation graph learning
module to capture and leverage this property-aware relation
graph among molecules, such that the molecular embeddings
can be efficiently propagated and better learned.

The mth relation graph is established based on a set Vω,m =
Sω ∪ (xω,m, yω,m), containing the support set and themth query
molecule. We will alternately estimate relation graphs among
molecules, and refine the molecular embeddings on the learned
relation graph for T times. At the τ th iteration, we take each
molecule in Vω,m as a node and construct a query-dependent

graph G(τ)
ω,m, which is encoded by an adjacency matrix A

(τ)
ω,m ∈

R(2K+1)×(2K+1). The element [A(τ)
ω,m]pq in A

(τ)
ω,m reflects the

similarity between the pth and qth molecules in Vω,m.

Let h(τ)
ω,m,p be embedding of the pth molecule xω,p in Vω,m

during the τ th iteration and we initialize h
(0)
ω,m,p by its corre-

sponding property-aware embedding pω,p. Then, we estimate
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A
(τ)
ω,m using the current molecular embeddings h

(τ−1)
ω,m,p’s, and

the (p, q)th element of A(τ)
ω,m is calculated as

[A(τ)
ω,m]pq=

{
MLPWa

(
exp(−|h(τ−1)

ω,m,p−h
(τ−1)
ω,m,q|)

)
if p �= q

0 otherwise
,

(5)

where Wa is the parameter of this MLP. The resultant A(τ)
ω,m is

a dense matrix, which encodes a fully connected G(τ)
ω,m.

However, a query molecule only hasK real neighbors inG(τ)
ω,m

in a 2-way K-shot task. For binary classification, choosing a
wrong neighbor in the opposite class will heavily deteriorate
the quality of molecular embeddings, especially when only one
labeled molecule is provided per class. To avoid the interference
of wrong neighbors, we further reduce G(τ)

ω,m to a K-nearest
neighbor (KNN) graph, whereK is set to be exactly the same as
the number of labeled molecules per class inS . DenoteN (v,K)
the Kth largest element of vector v. Then, we set

[B(τ)
ω,m]pq=

{
[A

(τ)
ω,m]pq if [A(τ)

ω,m]pq≥N
(
[A

(τ)
ω,m]:q,K

)
0 otherwise

.

(6)

The values in B
(τ)
ω,m are normalized to range between 0 and

1, which is done by applying softmax function on each row
[B

(τ)
ω,m]p:. This normalization can also be done by z-score, min-

max and sigmoid normalization.
Then, we co-adapt each node embedding h

(τ)
ω,m,p’s with re-

spect to other node embeddings on this updated relation graph
encoded by B

(τ)
ω,m. Let H(τ)

ω,m denote embeddings of all nodes

in G(τ)
ω,m, where the ith column corresponds to h

(τ)
ω,i. H

(τ)
ω,m is

updated as

H(τ)
ω,m = LeakyReLu

(
WrH

(τ−1)
ω,m B(τ)

ω,m

)
, (7)

whereWr is a learnable parameter. After T iterations, we return
hω,m,p = [H

(T )
ω,m]:p as the final molecular embedding for the pth

molecule in Vω,m, and Bω,m = B
(T )
ω,m as the final optimized

relation graph.
Finally, the class prediction, i.e., zω,m,p, of the pth molecule

in Vω,m w.r.t. active/inactive is calculated as

zω,m,p = softmax (Wc · hω,m,p) , (8)

where Wc is a parameter.

D. Objective

We denote PAR model as fθ,Φ. In particular, θ = {Wg ,
Wa, Wr} includes the collection of parameters of graph-based
molecular encoder and relation graph learning module that
represent generic information. While Φ = {Wp, Wc} includes
the parameters of MLP to calculate pω,i and the classifier that
represent property-aware information.

Based on the framework of MAML introduced in Section II-B,
we first propose new loss functions, then selectively update Φ in
inner loop update while simultaneously update θ and Φ in outer

loop update. Through the selective update strategy, the model
can capture generic and property-aware information separately
in the training procedure.

Denote yω,i ∈ R2 as a one-hot vector representing the
ground-truth label of xω,i ∈ Sω . Gω,m is the ground-truth rela-

tion graph of G(τ)
ω,m with [Gω,m]pq = 1 if ground-truth labels of

the pth and qth samples in Vω,m are the same and 0 otherwise.
First, we design the loss �Sω

evaluated on Sω with the mth
query-dependent relation graph as follows

�Sω
(fθ,Φ,Gω,m,Bω,m) = −

2K∑
i=1

y�
ω,i · log(zω,m,i)

+λ

2K∑
p=1

2K∑
q=1

([Gω,m]pq − [Bω,m]pq)
2 , (9)

where λ is a hyper-parameter. The first term is the cross entropy
loss for classification, and the second term is the specially de-
signed neighbor alignment regularizer to penalize the selection
of wrong neighbors among support molecules. Since there are
M molecules in query set for each task and we need to construct
relation graphs for each of them, the training loss for the in inner
loop update is LSω

(fθ,Φ) =
∑M

m=1 �Sω
(fθ,Φ,Gω,m,Bω,m).

Denote yω,m ∈ R2 as a one-hot vector representing the
ground-truth label of xω,m ∈ Qω . Following MAML, we in-
troduce Φω as

Φω = Φ− α∇ΦLSω
(fθ,Φ). (10)

We use different strategies to updateΦ and θ. As θ is considered
as generic information, we keep it fixed in inner loop update.
Variants of MAML such as ANIL and BOIL also consider
selective update, but they only freeze head layer or body of
the model in inner loop update. Here we further analyze the
parameters of PAR and classify them into generic information θ
and property-aware informationΦ. The selective update strategy
with more elaborate parameter classification helps our PAR
model learn better.

For outer loop update, we associate loss �Qω
for themth query

sample as

�Qω
(fθ,Φω

,Gω,m,Bω,m) = −y�
ω,m · log(zω,m,2K+1)

+ g (Gω,m,Bω,m) + g
(
G�

ω,m,B�
ω,m

)
, (11)

where g(X,Y) = μ
∑2K

p=1([X]p(2K+1) − [Y]p(2K+1))
2, and

μ is a hyper-parameter. Again, the first term is the cross
entropy loss for classification. The second and the third
term are the regularizer that penalizes wrong relation predic-
tion between support molecules and query molecules. Thus,
the training loss evaluated on Qω in outer loop update is
LQω

(fθ,Φω
) =

∑M
m=1 �Qω

(fθ,Φω
,Gω,m,Bω,m). Finally, the

meta-trained parameters θ∗ and Φ∗ can be obtained by
minθ,Φ

∑
ω LQω

(fθ,Φω
), which can be trained by gradient de-

scent as Section II-B1.
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Algorithm 1: Meta-Training Procedure for PAR.

1: initialize θ = {Wg,Wa,Wr} and Φ = {Wp,Wc}
randomly; if a pretrained molecular encoder is available,
take its parameter as Wg;

2: while not done do
3: sample a set of tasks Z;
4: for each task Tω ∈ Z do
5: obtain molecular embedding gω,i for each xω,i by

graph-based molecular encoder;
6: adapt gω,i to be property-aware pω,i by (4);
7: for m = 1, . . . ,M do
8: initialize node embeddings h(0)

ω,m,p by pω,p;
9: for τ = 1, . . . , T do

10: estimate dense graph A
(τ)
ω,m using h

(τ−1)
ω,m,p by (5);

11: obtain sparsified graph B
(τ)
ω,m by (6);

12: refine h
(τ)
ω,m,p by (7);

13: end for
14: obtain class prediction zω,m,p by (8);
15: end for
16: fine-tune Φ as Φω by (10);
17: end for
18: update θ and Φ by gradient descent;
19: end while

E. The Complete Algorithm

The meta-training procedure of PAR is shown in Algo-
rithm 1. Line 5–6 correspond to property-aware molecular en-
coder which captures property-related information (Section II-
I-B). Line 8–13 correspond to query-dependent relation graph
learning which facilitates learning molecular embeddings and
propagating labels among similar molecules (Section III-C).
Line 15–17 correspond to the meta-learning strategy built on
MAML with selective update approach (Section III-D). In the
meta-testing step, meta-trained θ∗ and Φ∗ are used as the ini-
tialized parameters. We first fine-tune Φ∗ on S0 and fix θ∗, then
use the updated model to predict the property of molecules in
Q0. Detailed meta-testing procedure is in Appendix B.

IV. TRANSFERABLE PAR

Apart from the lack of labeled data as discussed in Sec-
tion II-C2, distribution shift, where the training distribution is
not identical with the test distribution, is also very common in
AI-aided drug discovery [26], [27]. Such a shift in the task
distribution can significantly deteriorate the performance of a
learning model [61]. For example, when designing drugs for a
sudden epidemic, we need to handle new molecules targeted
for the disease. Thus, when trained with molecules at hand, we
need to deal with not only a few labeled data but also the possible
distribution shift.

In the sequel, we formulate such a prediction task as a trans-
ferable FSL MPP problem (Section IV-A) To solve this problem,
we extend PAR as T-PAR (Fig. 3), which is short for transfer-
able PAR. T-PAR continues using the property-aware molecular
encoder in PAR (Fig. 3(b)), which can obtain property-aware

molecular embeddings for the tasks, i.e., ps,i for Ts and pt,i

for Tt, through (2)-(4) in Section III-B. To bridge the gap
between source and target domain, T-PAR introduces two key
designs to solve transferable few-shot MPP problems: (i) joint
sampling strategy (Fig. 3(a)) which involves molecules from
source and target domain in the training procedure together such
that the models can better encode target domain (Section IV-B),
and (ii) joint relation graph learning (Fig. 3(c)) which models
the relationship between source and target domain so that the
molecular embeddings can be effectively propagated between
source and target domain (Section IV-C). Finally, we describe
the learning objective of T-PAR (Section IV-D) and provide the
complete algorithm (Section IV-E).

A. Problem Formulation

In the transferable FSL MPP setting, we need to tackle with 2-
wayK-shot MPP tasks from the target domain given labeled data
mainly from the source domain (source domain tasks and target
domain tasks do not have class overlap). Following Section II-B,
we formulate the new problem as follows. The formation of
the target domain task is T0 = {S0,Q0}. However, the given
auxiliary data is quite different from those in traditional FSL
setting. Here we are given an auxiliary base training set D from
source domain with sufficient numbers of labeled samples and
a set of MPP tasks Zl = {Tt} from target domain with only a
few labeled samples. For example, molecules in Tt are a few
candidate drugs for the new disease.

Note that none of existing MPP methods discussed in
Section II-C2 can handle the transferable FSL setting here.
First, few-shot MPP methods, e.g., IterRefLSTM [3], Meta-
MGNN [8] and PAR, make the implicit assumption that the
molecules from meta-training tasks and those from meta-testing
tasks follow the same distribution. The performance of the
models will inevitably degrade in these practical scenarios.
Besides, transferable MPP methods including ChemNet [54]
and DTCR [2] can handle the distribution shift, but they cannot
generalize to new tasks with a few labeled samples. Finally,
FSL methods that can be used in the transfer setting here, e.g.,
BOIL [62] and DAPN [40], do not consider the particularity of
MPP problems, which leads to their unsatisfactory performance.

In the sequel, to easily identify notations extended from PAR
to T-PAR with similar functionality, we mark them by ·̂, e.g., A
in PAR v.s. Â in T-PAR.

B. Joint Sampling

In PAR and other ordinary MPP methods [3], [8], they only
use tasks sampled from source domain in the training process.
Without obtaining any target domain data in the training stage,
these methods are unable to generalize to the target domain in
the testing stage, so they cannot tackle transferable few-shot
MPP problems. The given labeled target domain tasks are very
important for the MPP model to obtain knowledge from the
target domain in the training process.

In order to fully make use of the labeled target domain data in
the training stage, we propose a joint sampling strategy, which
simultaneously obtains a meta-training task from source and
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Fig. 3. The proposed T-PAR can be mainly divided into three parts: (a) Joint sampling where we sample Ts from D and randomly select Tt from Zl, and two
2-way 2-shot tasks form a task pair T̂ω ; (b) Property-aware molecular encoder where we continue to use the property-aware molecular encoder in PAR to obtain
property-aware molecular embeddings ps,i and pt,i for molecules in the two tasks; and (c) Joint relation graph learning, where we put molecules from Ts and Tt
into the same graph to model the relationship between source and target domain, iteratively update their embeddings through the joint relation graph as hs,m,p

and ht,m,p, which are taken as the final molecular embeddings and used for class prediction.

target domain, i.e., sample Ts from D as source domain task
and randomly select Tt from Zl as target domain task. The
two sample tasks form a task pair T̂ω = {Ts, Tt}. Repeat the
sampling process we can obtain a set of task pairs Ẑ = {T̂ω}
for the training process. Through the joint sampling strategy,
the two tasks from different domains are able to simultaneously
participate in the meta-training step and the adapt step of the
model, which helps the model to learn knowledge from target
domain better.

C. Joint Relation Graph Learning

Apart from introducing target domain data to the training
process through joint training strategy, it is more important
to model the relationship between source domain and target
domain in the training process. To achieve this goal, we consider
putting molecules in Ts and Tt into the same relation graph so
that molecular embeddings can be propagated between source
and target domain.

Each time we collect all support molecules and a query
molecule in each of the two tasks to construct a joint rela-
tion graph. Specifically, assume the mth joint relation graph
samples the j1th query molecule (xs,j1 , ys,j1) in Ts and the
j2th query molecule (xt,j2 , yt,j2) in Tt, the relation graph is
established based on a set V̂ω,m= Vs,m ∪ Vt,m, where Vs,m =
Ss ∪ (xs,j1 , ys,j1) and Vt,m = St ∪ (xt,j2 , yt,j2). For each set
V̂ω,m, we will iteratively update the molecular embeddings on
the learned jointly relation graph for T times.

At the τ th iteration, we take each molecule in V̂ω,m as a node

and calculate an adjacency matrix Â
(τ)
ω,m ∈ R(4K+2)×(4K+2) to

encode the joint relation graph G(τ)
ω,m among these nodes. We

denote h
(τ)
s,m,p the embedding of the pth molecule xs,p in Vs,m

during the τ th iteration and initializeh(0)
s,m,p by its corresponding

property-aware embedding ps,p (h(τ)
t,m,p and h

(0)
t,m,p are defined

similarly). Then, we can estimate Â(τ)
ω,m using the current molec-

ular embeddings and here we split Â(τ)
ω,m into four parts

Â(τ)
ω,m =

[
Â

(τ)
ss,m Â

(τ)
st,m

Â
(τ)
ts,m Â

(τ)
tt,m

]
, (12)

where Â(τ)
ss,m and Â

(τ)
tt,m control the molecular embedding prop-

agation among molecules in the same task while Â
(τ)
st,m and

Â
(τ)
ts,m control the molecular embedding propagation between

molecules in different tasks. The similarity between the pth and
qth molecules in V̂ω,m is represented by the (p, q)th element

[Â
(τ)
ω,m]pq in Â

(τ)
ω,m, its value can also be computed using h

(τ−1)
t,m,p

and h
(τ−1)
t,m,q following (5). In addition, here in (5) we use Wa to

calculate similarity between molecules from the same domain
(i.e., Â(τ)

ss,m and Â
(τ)
tt,m) and use another Wb to calculate sim-

ilarity between molecules from different domains (i.e., Â(τ)
st,m

and Â
(τ)
ts,m).
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However, since Â
(τ)
ω,m jointly models molecules from both

source and target domain, we take different thresholds to sparsify
different blocks in Â

(τ)
ω,m. Specifically, we again follow (6), but

different thresholds are used.
� Within domain, i.e., Â(τ)

ss,m and Â(τ)
tt,m. Since the two blocks

only model interactions between molecules in the same
domain, we use N ([Â

(τ)
ss,m]:q,K) and N ([Â

(τ)
tt,m]:q,K) as

thresholds for Â(τ)
ss,m and Â

(τ)
tt,m respectively.

� Cross domain, i.e., Â(τ)
st,m and Â

(τ)
ts,m. We take the same

N ([Â
(τ)
ss,m]:q,K) as the threshold as these two blocks both

control the embedding propagation between molecules in
Tt and those in Ts.

Thus, we will obtain the sparsified relation graph as

B̂(τ)
ω,m =

[
B̂

(τ)
ss,m B̂

(τ)
st,m

B̂
(τ)
ts,m B̂

(τ)
tt,m

]
, (13)

where each block is sparsified from the corresponding part in
Â

(τ)
ω,m. Then, we co-adapt each node embedding on this updated

relation graph encoded by B̂
(τ)
ω,m.

Let H(τ)
s,m denotes all node embeddings in Vs,m collectively

where the pth column corresponds to h
(τ)
s,m,p and H

(τ)
t,m is de-

fined similarly. We obtain Ĥ
(τ)
ω,m = [H

(τ)
s,m,H

(τ)
t,m] and update

the molecular embeddings

Ĥ(τ)
ω,m = LeakyReLu(WrĤ

(τ−1)
ω,m B̂(τ)

ω,m), (14)

whereWr is a learnable parameter. After T iterations, we return
hs,m,p = [H

(T )
s,m]:p andht,m,p = [H

(T )
t,m]:p as the final molecular

embeddings for molecules in V̂ω,m, B̂s,m = B̂
(T )
ss,m and B̂t,m =

B̂
(T )
tt,m, as the final relation graph. We do not return B̂

(T )
st,m and

B̂
(T )
ts,m in B̂(T )

ω,m because there is no ground-truth relation between
molecules from different tasks. Finally, we can obtain the MPP
zs,m,p for hs,m,p and zt,m,p for ht,m,p through the classifier
as (8) for each task.

D. Objective

Here, we extend selective update strategy in Section III-D to
transfer learning scenario. Still, we denote T-PAR model as f̂θ̂,Φ̂,

where θ̂ = {Wg,Wa,Wb,Wr} represent generic information
and Φ̂ = {Wp,Wc} represent property-aware information.

Denote Ĝs,m as the ground-truth relation graph of nodes in
Vs,m with [Ĝs,m]pq = 1 if ground-truth labels of the pth and qth
samples in Vs,m are the same and 0 otherwise. Ĝt,m can be de-
fined similarly. As we separately calculate the MPP (zs,m,p and
zt,m,p) and the relation graph (B̂s,m and B̂t,m) for molecules
in Ts and Tt, the loss within each task can be obtained as
Section III-D. Specifically, the loss function �Ss

and �St
for

the mth joint relation graph can be designed as (9). As there
are M query molecules in each of the two tasks, we con-
struct M2 joint relation graphs. Considering all the joint re-
lation graphs, we can calculate the training loss the inner
loop update as L̂Sω

(f̂θ̂,Φ̂) =
∑M2

m=1(�Ss
(f̂θ̂,Φ̂, Ĝs,m, B̂s,m) +

�St
(f̂θ̂,Φ̂, Ĝt,m, B̂t,m)), where we simultaneously consider the

loss from source and target domain. Next, we selectively update
the property-aware information Φ̂ to Φ̂ω as

Φ̂ω = Φ̂− α∇Φ̂L̂Sω
(f̂θ̂,Φ̂), (15)

and fix the generic information θ̂ in inner loop update.
Then, we design the loss functions �Qs

and �Qt
for query

samples in the mth joint relation graph as (11), through which
we can propose the training loss evaluated on for T̂ω in outer loop
update as L̂Qω

(f̂θ̂,Φ̂ω
) =

∑M2

m=1(�Qs
(f̂θ̂,Φ̂, Ĝs,m, B̂s,m) +

�Qt
(f̂θ̂,Φ̂, Ĝt,m, B̂t,m)). Considering all the task pairs in Ẑ ,

we obtain the meta-trained parameters θ̂
∗

and Φ̂
∗

through
minθ̂,Φ̂

∑
ω L̂Qω

(f̂θ̂,Φ̂ω
), where Φ̂ω can be obtained by (15).

E. The Complete Algorithm

Meta-training procedure of T-PAR is shown in Algorithm 2.
Compared to PAR, T-PAR considers a practical scenario, where
the training data follows a different data distribution with testing
data. In the algorithm, line 3 corresponds to the joint sampling
strategy which involve molecules from source and target domain
in the training procedure together (Section IV-B). Line 5-6
correspond to property-aware molecular encoder (Section II-
I-B). Line 10-12 correspond to joint relation graph learning
which model the relationship between source and target domain
(Section IV-C). Line 16-18 correspond to training and inference
step (Section IV-D). With the proposed joint sampling and
relation graph learning components, T-PAR can perform better
in transferable few-shot MPP problems.

In the meta-testing procedure (details are in Appendix B), we
only construct relation graph among molecules in T0 without
task pairs like T̂ω. The meta-testing procedure of T-PAR uses θ̂

∗

and Φ̂
∗

meta-trained by T-PAR to initialize the model, adopts
selective update strategy to fine-tune the model on the support
set S0 and gets the MPP accuracy on the query set Q0.

V. EXPERIMENTS

A. Few-Shot Setting

1) Setup: Datasets: We perform experiments1 on widely
used few-shot MPP datasets from MoleculeNet2 [49], whose
statistics are provided in Table I. Briefly, (i) Tox21 [25] contains
assays each measuring the human toxicity of a biological target;
(ii) SIDER [59] records the side effects for compounds used
in marketed medicines, where 5868 side effects are grouped
into 27 categories as in [3], [8]; (iii) MUV [1] is designed to
validate virtual screening where active molecules are chosen to
be structurally distinct from each another; and (iv) ToxCast [60]
is a collection of compounds with toxicity labels which are
obtained via high-throughput screening. Tox21, SIDER and
MUV have public task splits provided by [3], which are adopted
in this paper. For ToxCast, we randomly select 450 tasks for
meta-training and use the rest for meta-testing.

1The codes of PAR are available at https://github.com/tata1661/PAR-
NeurIPS21. The codes of T-PAR will be made public upon publication.

2All datasets are downloaded from http://moleculenet.ai/.
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Algorithm 2: Meta-Training Procedure for T-PAR.

1: initialize θ̂ = {Wg,Wa,Wb,Wr} and
Φ̂ = {Wp,Wc} randomly; if a pretrained molecular
encoder is available, take its parameter as Wg;

2: while not done do
3: sample a set of tasks pairs Ẑ;
4: for each task pair T̂ω ∈ Ẑ do
5: obtain molecular embedding gs,i and gt,i by a

graph-based molecular encoder;
6: adapt gs,i and gt,i to be property-aware ps,i and pt,i

by (2) to (4);
7: for m = 1, . . . ,M2 do
8: initialize node embeddings h(0)

s,m,p and h
(0)
t,m,p by

ps,p and pt,p;
9: for τ = 1, . . . , T do

10: estimate dense graph Â
(τ)
ω,m by (12);

11: obtain sparsified graph B̂
(τ)
ω,m by (13);

12: refine h
(τ)
s,m,p and h

(τ)
t,m,p by (14);

13: end for
14: obtain class prediction zs,m,p and zt,m,p by (8);
15: end for
16: fine-tune Φ̂ as Φ̂ω by (15);
17: end for
18: update θ̂ and Φ̂ by gradient descent;
19: end while

TABLE I
BENCHMARK DATASETS USED IN THIS PAPER

Evaluation Metrics: Following [8], [24], we evaluate the bi-
nary classification performance by ROC-AUC scores calculated
on the query set of each meta-testing task. We run experiments
for ten times with different random seeds, and report the mean
and standard deviations of ROC-AUC computed over all meta-
testing tasks.

Baselines: Following [8], [24], we use RDKit [63] to build
molecular graphs from raw SMILES, and to extract atom fea-
tures (atom number and chirality tag) and bond features (bond
type and bond direction). For FSL methods with graph-based
molecular encoder learned from scratch, we use GIN [21] as
the graph-based molecular encoder to extract molecular embed-
dings, which include
� Siamese [64] which learns dual convolutional neural net-

works to identify whether the input molecule pairs are from
the same class;

� ProtoNet [13] which assigns each query molecule with the
label of its nearest class prototype;

� MAML [16] which adapts the meta-learned parameters to
new tasks via gradient descent;

� ANIL [36] and BOIL [62] which are variants of MAML;
� TPN [65] which conducts label propagation on relation

graphs with rescaled edge weights under transductive set-
ting;

� EGNN [66] which learns to predict edge labels of relation
graphs;

� IterRefLSTM [3] which adapts Matching Networks [23] to
handle MPP tasks;

� and the proposed PAR (Algorithm 1).
Besides, for FSL methods leveraging pretrained graph-based

molecular encoder, we consistently use the pretrained GIN pro-
vided by the authors of [24], which include
� Pre− GNN [24] which uses graph-level and node-level

self-supervised tasks to fine-tune the model on support sets;
� Meta−MGNN [8] which optimizes the MPP task with

self-supervised bond reconstruction and atom type predic-
tion tasks;

� Pre− PAR which is our PAR (Algorithm 1) equipped with
pretrained molecular encoder.

GROVER [9] is not compared as it uses a different set of atom
and bond features. We use results of Siamese and IterRefLSTM
reported in [3] as their codes are not available. For the other
methods compared with PAR and Pre-PAR, we use public codes
from the respective authors. Hyper-parameter settings are in
Appendix C.

2) Performance Comparison: Table II shows the results. Re-
sults of Siamese and IterRefLSTM on ToxCast are not provided
because the two methods lack codes and are not evaluated on
ToxCast before. As can be seen, methods using the pretrained
graph-based molecular encoder generally perform better than
methods using graph-based molecular encoders learned from
scratch. This reveals that pretrained graph-based molecular
encoder, which encodes rich generic molecular information
via pretraining, indeed provides better molecular embeddings.
Among all methods, Pre-PAR consistently obtains the best per-
formance, while PAR obtains the best performance among meth-
ods using graph-based molecular encoders learned from scratch.
These outperforming results can be attributed to the combination
of metric-based and optimization-based method in the design of
PAR method. In terms of average improvement, PAR obtains
significantly better performance than the best baseline learned
from scratch (e.g. EGNN) by 1.59%, and Pre-PAR is better
than the best baseline with pretrained molecular encoders (e.g.
Pre-GNN) by 1.49%. In addition, we observe that FSL methods
that learn relation graphs (i.e., TPN, EGNN and PAR) obtain
better performance than the classical Siamese and MAML.

3) Varying Components in PAR: We further compare PAR
(and Pre-PAR) with the following variants following control
variates method:
� w/oPwhich removes property-aware embedding function;
� w/ocontextinP which removes contextualized molecular

embedding bω,i in (4);
� w/oR which removes query-dependent relation graph

learning;
� w/cos− siminR which obtain the adjacency matrix
[A

(τ)
ω,m]pq = (p

(τ)
ω,m,p)�p

(τ)
ω,m,q/(‖p(τ)

ω,m,p‖2‖p(τ)
ω,m,q‖2)
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TABLE II
ROC-AUC SCORES ON BENCHMARK MOLECULAR PROPERTY PREDICTION DATASETS

Fig. 4. Experiments for varying components in PAR on 10-shot tasks from Tox21.

using cosine similarity, then calculates (6) and (7) as in
PAR;

� w/oKNNinRwhich reducesGω toKNN graph, i.e. without
sparsification of B;

� w/oreg which removes the neighbor alignment regularizer
in (9) and (11);

� tuneall which fine-tunes all parameters on line 15 of Algo-
rithm 1.

These variants cover all components of training PAR without
overlapping functionalities.

Fig. 4 (a)-(b) show the results of PAR and Pre-PAR obtained
on 10-shot tasks respectively. Again, Pre-PAR obtains better
performance than PAR due to a better start. PAR and Pre-PAR
outperform their variants. The removal of any component leads
to significant performance drop. In particular, the performance
gain of PAR and Pre-PAR with respect to w/ cos-sim in R
validates the necessity of learning a similarity function from
the data rather than using the fixed cosine similarity. We also try
to iterate the estimation of relation graph constructed by cosine
similarity, but observe a performance drop given more iterations.

In (9) in PAR, the top-K elements in each column in matrix
A are retained to obtain the sparsified matrix B. We further
conduct experiment to retain top-�ρK� elements in each column

in matrix A (we set ρ as an adaptable parameter ranging from
0.5 to 2). The results on 10-shot setting are shown in Fig. 4 (c),
which shows that the best performance can be obtained when ρ
is set between 1 and 1.5.

4) Using Other Graph-Based Molecular Encoders: In the
experiments, we use GIN and its pretrained version as the
molecular encoder. However, as introduced in Section III-B,
our PAR is compatible with any existing graph-based molec-
ular encoder introduced in Section II-A. Here, we consider
the following popular choices as the encoder to output gω,i:
GIN [21], GCN [51], GraphSAGE [20] and GAT [22], which
are either learned from scratch or pretrained. We compare the
proposed PAR and Pre-PAR with simply fine-tuning the encoder
on support sets (denote as GNN or Pre-GNN if encoder is
pretrained).

Fig. 5 shows the results on 10-shot tasks. GIN is the best
graph-based molecular encoder among the four chosen GNNs.
PAR outperforms the fine-tuned GNN consistently. This vali-
dates the effectiveness of the property-aware molecular encoder
and the relation graph learning module. We further notice that us-
ing pretrained encoders can improve the performance except for
GAT, which is also observed in [24]. Although using pretrained
graph-based molecular encoders can improve the performance
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Fig. 5. ROC-AUC scores on 10-shot tasks from Tox21 using different graph-
based molecular encoders.

in general, note that both molecular encoders learned from
scratch or pretrained are useful. Pretrained encoders contain rich
generic molecular information by learning enormous unlabeled
data, while encoders learned from scratch can carry some new
insights. For example, the recent DimeNet [67] can model di-
rectional information such as bond angles and rotations between
atoms, which has no pretrained version. As our proposed method
can use any molecular encoder to obtain generic molecular em-
bedding, it can easily accommodate newly proposed molecular
encoder w/o or w/ pretraining.

5) Case Study: Finally, we validate whether PAR can ob-
tain different property-aware molecular embeddings and correct
relation graphs. To examine this under a controlled setting,
we sample a fixed group of 10 molecules on Tox21 (see Ap-
pendix D.5) which coexist in different meta-testing tasks (i.e.,
the 10th, 11th and 12th tasks). Provided with the meta-learned
parameters θ∗ andΦ∗, we take these 10 molecules as the support
set to fine-tune Φ∗ as Φ∗

ω and keep θ∗ fixed in each task Tω . As
the support set is fixed now, the ratio of active molecules to
inactive molecules among the 10 molecules may not be 1:1 in
the three tasks. Thus, the resultant task may not evenly contain
K labeled samples per class.

Learned Relation Graphs: We first visualize the learned rela-
tion graph in PAR. As described in Section III-C, PAR returns
Bω,m as the adjacency matrix encoding the optimized relation
graph among molecules. Each element [Bω,m]pq records the
pairwise similarity of the 10 molecules and a random query
(which is dropped then). As the number of active and inactive
molecules may not be equal in the support set, we no longer
reduce adjacency matrices Aω,m to Bω,m which encodes KNN
graph. Fig. 6 plots the optimized adjacency matrices obtained on
all three tasks. As can be observed, PAR obtains different adja-
cency matrices for different property-prediction tasks. Besides,
the learned adjacency matrices are visually similar to the ones
computed using ground-truth labels.

Molecular Embeddings: We also present the t-SNE [68] visu-
alization ofgω,i (molecular embedding obtained by graph-based
molecular encoders), pω,i (molecular embedding obtained by
property-aware molecular encoder), and hω,i (molecular em-
bedding returned by PAR) for these 10 molecules. For the same
xω,i,gω,i is the same across the 10th, 11th, 12th tasks, whilepω,i

and hω,i are property-aware, hω,i which collectively contains
molecular embeddings adjusted on relation graphs. Fig. 7 shows

Fig. 6. Comparison between Gω,m computed using ground-truth labels (the
first row) and adjacency matrix Aω,m returned by PAR (the second row) for the
ten molecules. We set [Gω,m]pq = 1 if molecules xω,m,p and xω,m,q have
the same label and 0 otherwise.

the results. As shown, PAR indeed captures property-aware
information during encoding the same molecules for different
MPP tasks. From the first row to the third row in Fig. 7, molecular
embeddings gradually get closer to the class prototypes on all
three tasks. The visualization of hω,i shows that the two classes
are properly clustered, which shows the importance of relation
graph learning (metric-based method).

B. Transferable Few-Shot Setting

1) Setup: Datasets: As suggested by IterRefLSTM [3] and
DTCR [2], we consider transfer learning (i) between Tox21 and
SIDER which contain distinct tasks; (ii) from ToxCast to Tox21
which both evaluate toxicity and (iii) from ToxCast to SIDER
which differ largely, based on datasets in Table I.

Evaluation Metrics: We compute ROC-AUC scores on query
set of all tasks in the target datasets as in Section V-A1.

Baselines: On transferable FSL setting, the methods we used
can be categorized into two types. Firstly, we consider the
methods that perform well in the FSL setting in Section V-A2.
Here, we change the test set to target domain data to test their
performance (target domain data is not available in the training
step). They include
� Meta−MGNN [8] which is the few-shot MPP method that

performs second best in ordinary few-shot setting;
� PAR which is our few-shot MPP method introduced in

Section III that does not consider distribution shift;
Secondly, we consider the transferable FSL methods that fit

for the transferable few-shot MPP problems (only a few labeled
samples in target domain are available in the training step). They
include
� BOIL [62] which is a variant of MAML that can be applied

to transferable FSL problems;
� DAPN [40] which is selected as representative transferable

FSL baseline due to its superior performance, as introduced
in Section II-B2;

� and the proposed T− PAR (Algorithm 2).
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Fig. 7. t-SNE visualization of gω,i (the first row), pω,i (the second row), and hω,i (the third row) of the ten molecules, where hω,i collectively contains
molecular embeddings obtained after relation graph learning (metric-based method). Proto_active (proto_inactive) denotes the class prototype of active (inactive)
class.

TABLE III
ROC-AUC SCORES IN TRANSFERABLE FEW-SHOT MOLECULAR PROPERTY PREDICTION PROBLEMS

For approaches mentioned-above apart from PAR and T-PAR,
we use public codes from the respective authors to get the results.
We uniformly use the pretrained graph based molecular encoder
for fair comparison. DTCR [2] is not compared because it is
trained on the whole base training set of source domain and
does not follow the setting of FSL which samples meta-training
tasks for the training step.

2) Performance Comparison: Table III presents the results
where T-PAR constantly outperforms the others. In terms of
average performance improvement, T-PAR outperforms the best
baseline by 9.05%. PAR and Pre-GNN cannot predict the prop-
erty of molecules in target domain well in transferable FSL

setting, as they neither get access to target domain data during
training nor consider the distribution shift between source and
target domain. BOIL and DAPN also fail to get good results, as
they neglect the specialty of MPP problems. We also observe
that all methods obtain higher ROC-AUC score on ToxCast →
Tox21 than ToxCast → SIDER, which shows transfer learning
from similar source dataset is more helpful.

We also conduct experiment on the number of target domain
molecules given for training in each task. The results on Tox21
→ SIDER are in Fig. 8 and we put results on SIDER →
Tox21 in Appendix D.7. The results show that T-PAR signif-
icantly improves performance given target domain molecules in
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Fig. 8. Performance of T-PAR given different numbers of target domain
samples for tasks from Tox21 → SIDER.

Fig. 9. Varying components in T-PAR for 10-shot tasks from Tox21→SIDER.

the training procedure and performs better with more training
target domain molecules, which demonstrate the importance of
target domain data for T-PAR.

3) Varying Components in T-PAR: Here, we use the control
variates method to explore the influence of these varying compo-
nents in T-PAR. We compare T-PAR with the following variants:
� w/otranswhich removes using joint sampling strategy and

joint relation graph learning;
� w/ojointgraph which removes constructing joint relation

graph among molecules from different domains;
� w/diffthresh which uses N ([Â

(τ)
tt,m]:q,K) as the thresh-

old for the sparsification of Â(τ)
st,m and Â

(τ)
ts,m instead of

N ([Â
(τ)
ss,m]:q,K) for constructing (13);

� w/samesim which uses the same Wa to estimate (12);
� w/diffclass which uses different Wc to classify molecules

from different domains.
Results for 10-shot tasks are shown in Fig. 9. We can see that

the results of w/o trans and w/o joint graph are lower than our
T-PAR, which show the positive effect of joint sampling and
relation graph learning. For the performances of other variants,
w/ same sim gets worse results as it cannot separately capture the
knowledge of different kinds of relations, while w/ diff class is
harmful to the prediction results because the classifier in the
target domain cannot obtain useful information from source
domain molecules when using separate classifiers.

4) Number of Joint Relation Graphs in Each Task Pair: In
Section IV-D, we constructM2 joint relation graphs in each task
pair during training. In this part, we conduct experiments on the
number of joint relation graphs in each task pair. Note that we
have to construct at least M joint relation graphs by sampling
each query molecule in the two tasks without replacement

Fig. 10. The experiment on the number of joint relation graphs in each task
pair for 10-shot tasks from Tox21 → SIDER.

to obtain the property prediction for all the query molecules
once.

Fig. 10 shows the results on 10-shot tasks. We can see
that constructing 2M , 4M or M2 joint relation graphs do
not get better performance than constructing M joint rela-
tion graphs though taking more training time. Therefore, we
construct only M joint relation graphs in each task pair in
experiments.

5) Case Study: In the case study, we visualize the joint
relation graph in T-PAR and the molecular embeddings in PAR
and T-PAR under the transferable FSL setting.

Learned Joint Relation Graphs: To display different joint
relation graphs under a controlled setting, we sample a fixed
group of 10 molecules on Tox21 as source domain task (mol_1
- mol_10) and another fixed group 10 molecules on SIDER
that coexist in two target domain tasks (mol_11 - mol_20).
The 20 molecules form two task pairs (i.e., the 1st and 2nd
task pairs) and their specific information is in Appendix D.8.
In order to visualize the complete joint relation graph, here we
show the joint adjacency matrix Â

(τ)
ω,m and do not conduct the

sparsification step to update it as B̂(τ)
ω,m.

Results of joint relation graph visualization are in Fig. 11.
Denote the upper left and lower right part of the matrices as
inner-task parts, which represent the relation of molecules in
the same task. Denote the upper left and lower right part of the
matrices as inter-task parts, which represent the relation between
molecules in different tasks. As can be observed, the inner-task
parts in the matrices show the truth relation of the molecules,
which means that T-PAR can precisely predict inner-task rela-
tions. The inter-task parts have darker color than the inner-task
parts, which means that the molecules in the same task have
closer relation. Moreover, inner-task parts of the two matrices is
different, demonstrating that the relation between different task
pairs is different.

Molecular Embeddings: For the molecular embeddings, we
respectively sample a 10-shot task from source domain and target
domain, and use t-SNE to visualize the molecular embedding
hω,i produced by PAR and T-PAR. As shown in the results in
Fig. 12, T-PAR can distinguish molecules with different labels in
target domain better. But PAR differentiates differently labeled
molecules from source domain better, because T-PAR further
considers molecules from target domain in the training process,
which possibly influence the embedding learning for source
domain adversely.
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Fig. 11. The upper left and lower right part of the matrices in the first row
show the ground-truth relation graph among molecules in the same task. The

matrices in the second row show the illustration of the joint relation graph Â(τ)
ω,m

returned by T-PAR for the 20 molecules.

Fig. 12. t-SNE visualization of hω,i produced by PAR (the first row) and
T-PAR (the second row) of source and target domain tasks from Tox21→SIDER.

VI. CONCLUSION

We propose Property-Aware Relation networks (PAR) to ad-
dress the few-shot MPP problem. PAR contains a graph-based
molecular encoder, a property-aware molecular encoder, and
a relation graph learning module. By design, PAR can obtain
property-aware molecular embeddings and model molecular
relation graph adaptively. We extend PAR as T-PAR to handle the
transferable few-shot MPP problem. Extensive empirical results
show that PAR and T-PAR obtain state-of-the-art results on

typical few-shot and transferable few-shot property prediction
problems, respectively.

For future work, we plan to explore hypernetwork-based
methods [69] which have the potential to offer faster infer-
ence speeds and reduce the risk of overfitting, in contrast to
optimization-based meta-learning methods that rely on gradient
descent. Additionally, we are considering the use of automated
machine learning techniques [70], [71] to search for property-
specific architectures automatically. This approach could poten-
tially free researchers and engineers from the task of manually
designing models.
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