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Abstract While recent years have witnessed the advancement in big data and Artificial In-
telligence (AI), it is of much importance to safeguard data privacy and security. As an inno-
vative approach, Federated Learning (FL) addresses these concerns by facilitating collabo-
rative model training across distributed data sources without transferring raw data. However,
the challenges of robust security and privacy across decentralized networks catch significant
attention in dealing with the distributed data in FL. In this paper, we conduct an extensive
survey of the security and privacy issues prevalent in FL, underscoring the vulnerability of
communication links and the potential for cyber threats. We delve into various defensive
strategies to mitigate these risks, explore the applications of FL across different sectors, and
propose research directions. We identify the intricate security challenges that arise within the
FL frameworks, aiming to contribute to the development of secure and efficient FL systems.

Keywords Federated learning · Machine Learning · Security · Privacy

1 Introduction

In recent years, rapid advancements in big data and Artificial Intelligence (AI) technologies
have ushered in an era characterized by an unprecedented proliferation of interconnected In-
ternet of Things (IoT) devices and web platforms. This digital tapestry, while instrumental
in catalyzing the data revolution, concurrently yields vast quantities of distributed data —
a significant portion of which is sensitive in nature. Notably, there exists a gap in the ade-
quate protection of this sensitive information, a critical oversight in the current data-centric
world. The emergent challenges have not gone unnoticed at the legislative level. A myriad
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of regulations, including such as the Cybersecurity Law of the People’s Republic (CLPR)
of China [199], the General Data Protection Regulation (GDPR) [163], the California Con-
sumer Privacy Act (CCPA) [24], and the Consumer Privacy Bill of Rights (CPBR) [58], have
been established to safeguard the privacy and security of raw data. Current estimations indi-
cate that these privacy legislations may encompass up to 75% of the global population [219],
necessitating over 80% of worldwide enterprises to conform by the culmination in 2023. In
this dynamic landscape, the development and deployment of sophisticated defense method-
ologies are imperative. Such techniques are pivotal to maintain data privacy and security
throughout the lifecycle of machine learning models, including both training and inference
phases.

Traditional centralized machine learning paradigms necessitate the aggregation of data
at a single server or data center, serving as the nexus for both training and inference op-
erations. Training, an iterative process, refines machine learning model parameters through
specific algorithms and can be computationally intensive and time consuming [209]. In con-
trast, the inference phase leverages these trained models to deduce predictions or classifica-
tions [117]. The introduction of Distributed Machine Learning (DML) techniques augments
both the accuracy and computational efficiency of the model training process. However,
this decentralization inevitably exacerbates concerns regarding data privacy and security.
Federated Learning (FL) emerges as a pivotal solution in this context. Instead of transfer-
ring raw data, which incurs potential privacy violation, FL facilitates the dissemination of
a global model to individual devices. These devices, in turn, harness local data to refine
the model. Post-training, the local devices relay the updated model parameters to the cen-
tral server for amalgamation. This iterative process is perpetuated until model convergence
is achieved, ensuring data remains local, thereby supporting privacy and security. While FL
offers clear advantages, it also faces challenges. Weak points in the communication links be-
tween devices and central servers can lead to cyberattacks. In addition, if servers or devices
are compromised, they might bring in malicious activities, threatening the overall security
of the system.

FL has emerged as a key development in the field of modern DML. Numerous sur-
veys delve into the fundamental aspects of FL, discussing topics like deployment architec-
ture, system lifecycle, defining characteristics, classifications, and the range of open-source
tools available [1, 4, 101, 117, 217]. Recent studies analyze FL within the software engi-
neering domain, providing insights into the detailed processes involved in developing FL
systems [131, 201]. In terms of application, significant works focus on specific application
of FL. Important studies in this realm cover multiple topics, such as edge computing [223],
integration methods for the IoT and the Industrial IoT (IIoT) [92, 159, 168], strategies cen-
tered on personalization [85], and in-depth reviews exploring the economic impact of FL
adoption [259]. In terms of security, a plethora of seminal works have structured frame-
works that elucidate the intricacies of FL security [154, 250]. Alongside these, there are
focused analyses identifying potential security risks, with an emphasis on the security and
privacy challenges within FL [136, 178]. The growing concerns about privacy breaches are
a significant topic of interest in recent discussions [182, 237]. A consistent finding across
these studies is the presence of challenges during the development and deployment of FL,
especially concerning system vulnerabilities and device reliability [87].

These studies reveal a research shortfall, emphasizing the need for in-depth investiga-
tions into security, privacy, and relevant defensive strategies within the FL paradigm. Thus,
based on the FL system architecture, we explore the security and privacy issues faced at each
architecture layer and comprehensively discuss the existing defense techniques designed to



Trustworthy Federated Learning: Privacy, Security, and Beyond 3

enhance the ability to resist various types of security vulnerabilities. The notable contribu-
tions of this paper are as follows:

– We propose a universal FL system architecture that encompasses infrastructure, algo-
rithms, and user services. This architecture aids in the evaluation of existing FL sys-
tems. The current literature lacks this holistic view, which distinguishes our work from
existing surveys.

– We provides a comprehensive overview of the security and privacy issues present in FL,
as well as the primary attack methods. And also discuss a range of defense techniques
against these attacks, offering practical guidance for system developers.

– We analyze the applications of FL systems and identify future research directions. This
contribution enriches the discourse on FL and highlights opportunities for further devel-
opment.

The remainder of this paper is organized as follows. In Section 2, we introduce the
fundamental concepts of FL and elucidate the proposed FL system architecture. Section
3 delves into the prevalent security issues associated with FL. While some threats in FL
might arise non-maliciously due to device malfunctions or unpredictable participant be-
haviors, there are malicious threats that intentionally aim to undermine the system. These
can manifest as data poisoning, model corruption, and inference attacks. The decentralized
framework of FL offers enhanced privacy in machine learning but also introduces numer-
ous security challenges [57]. To address these challenges, we discuss a variety of defense
measures. These strategies, crafted considering vulnerabilities from both client devices and
central servers, are mainly classified into proactive and reactive types. Proactive defenses
aim to preemptively identify and mitigate threats, while reactive defenses come into play
once an attack has been detected. Technologies that have been extensively researched in this
context include encryption, Differential Privacy (DP), and anomaly detection. Section 4 ex-
plores the various applications of FL. This section is followed by Section 5, which elucidates
challenges and potential future research directions. Finally, Section 6 provides a conclusion
to the paper.

2 Overview of Federated Learning

In this section, we introduce the basic concepts of DML and FL. Then, we discuss the differ-
ences between FL and DML. Afterward, we explain the general FL framework architecture.

2.1 Federated Learning

Machine learning systems are traditionally reliant on aggregating raw data to a central-
ized server for model training. A large dataset generally corresponds to high accuracy of a
trained model. However, computational bottlenecks emerge when handling extensive data.
DML offers a countermeasure to this issue by implementing parallelization and concurrent
execution across multiple processing units, including CPUs, GPUs, and TPUs. This not only
improves efficiency but also enhances scalability. DML systems can be structured either in a
distributed or decentralized fashion. The former utilizes central servers for data interaction
and device synchronization, while the latter emphasizes peer-to-peer interactions and node
equality.
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As data volumes swell in ML tasks, various concerns, including legal, security, and pri-
vacy issues, have emerged. In DML systems, both data and models are potential targets for
attacks, with potential outcomes being data or model leaks, or compromise of the availabil-
ity of trained models. This amplifies the necessity to address these challenges, while FL
offers a promising solution.

Emerging as an innovative paradigm, FL mitigates the security and privacy issues in-
herent in DML [144]. These include concerns related to data leakage during communica-
tion [42] and the presence of data silos in various industries, an outcome of the challenges
associated with data sharing [47,122–124,243]. FL, as a DML methodology, creates global
models utilizing virtually aggregated data, without requiring raw data exchange between in-
dividual data sources. Instead, it relies on sharing model parameters or intermediate results,
such as gradients, between these sources. This attribute allows FL to achieve comparable
accuracy to traditional ML methods, while enhancing the security and privacy of raw data.

Depending on the network topology, FL can be either centralized or decentralized [100,
154]. In a centralized FL architecture, a central server acts as the hub where the global
model is built, managed, and updated. This server collects and aggregates parameters from
connected devices, which then use the updated global model [84, 103, 119–121, 245, 258].
Although this architecture simplifies management and synchronization, it potentially limits
system scalability due to its reliance on a single server, and can impose a heavy communi-
cation load in large-scale applications, making it vulnerable to single points of failure and
potential bottlenecks [134].

In contrast, a decentralized FL architecture operates without a central server, reducing
single point of failure risks and distributing the processing load. Devices or nodes in this
setup directly communicate with each other, using a consensus algorithm to ensure trust
and reliability [1, 57]. Each participant in this network refines their model by sharing in-
formation directly with their neighbors, enhancing privacy and reducing the risk of data
leakage [98]. However, this approach significantly increases communication costs as each
device must handle multiple connections, and establishing effective consensus among a large
number of clients becomes challenging [87]. To further enhance the security and traceability
of decentralized FL, recent works have integrated blockchain technology into the architec-
ture [12,114,160,174,189,241]. This integration leverages blockchain’s inherent character-
istics of decentralization, transparency, and immutability, providing a robust mechanism for
secure and traceable training processes without the need for third-party regulation [7, 97].
The blockchain-based FL systems can effectively mitigate risks such as data tampering and
model poisoning, ensuring a higher level of security in decentralized environments.

These different architectures of FL each have distinct security implications. Central-
ized FL is particularly susceptible to data privacy breaches and centralized control issues,
whereas decentralized FL faces challenges related to increased communication overhead and
the complexities of maintaining consensus without compromising on the speed or efficiency
of the learning process.

Depending on data distribution, FL can be classified as Horizontally FL (HFL), Verti-
cally FL (VFL) [126], and Federated Transfer Learning (FTL) [77]. In the context of cross-
device implementation, with its inherent challenges in maintenance and flexibility, this paper
primarily focuses on HFL.

Despite the advantages offered by FL, it is still susceptible to both non-malicious failures
and malicious attacks [87]. In FL systems, data and models can become targets for attackers.
An attacker can assume various roles, from a passive spectator to an active participant in
the system, each associated with different degrees of potential threat to privacy and security
(Table 1). An in-depth discussion of privacy and security issues in FL systems is presented in
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Table 1 Attacker role and their targets in FL system

Attacker Role Targets Description

Spectator [190] Model or Data Attackers can collect sensitive information from interactions within systems.

Devices [137]
Model Attackers may leak or change individual submodel information.
Data Attackers may leak local training dataset.

Servers [87] Model Attackers may leak model information or destroy model availability, either global or local
models.

Section 3, detailing how these concerns can be mitigated to ensure the successful application
of FL in various domains.

2.2 From DML to FL

FL is an offshoot of DML that facilitates collaborative learning without necessitating raw
data sharing, thus making significant strides in security and efficiency [117, 190]. This de-
velopment is particularly pertinent with the burgeoning trend of IoT and AI technologies. In
this section, we investigate the distinct features of DML and FL across four key dimensions:
training data, system workflow, security, and fault tolerance.

– Training Data
In FL, due to the heterogeneity of participating devices [31, 82, 113, 118], data distri-
bution and volume can demonstrate remarkable variances among devices. Such diver-
sity leads to a non-Independent and Identically Distributed (Non-IID) distribution in
the training data. Additionally, the volume of data on each individual device tends to
be asymmetrical, which lead to greater diversity [80]. Notably, the processing of data
occurs directly on these devices, circumventing the requirement for a distinct data man-
agement server. In contrast, DML assumes that the training data distribution of each
worker is a random sample procured from the entire dataset [212]. This necessitates a
data management server for data collection, feature engineering, and dataset partitioning
tasks.

– System Workflow
The conventional DML workflow comprises four main stages: initiation, training, evalu-
ation, and deployment [212]. The initiation stage involves data preprocessing and model
initialization, tailored to specific problems, with techniques like Logistic Regression
(LR), Support Vector Machine (SVM), and Neural Networks (NN) being predominantly
used for classification tasks. The training phase utilizes the curated data to train the
model for the specific task. Thereafter, the model undergoes evaluation using test data
to gauge its performance and to ascertain its effectiveness. Once the model is approved
in this evaluation phase, it gets deployed into the production environment. FL workflow
mirrors that of DML to a large extent, but deviates notably in the initiation phase. In par-
ticular, FL forgoes data preprocessing at a central location [243]. The distributed nature
of training data across client devices allows each client to undertake independent data
preprocessing based on the demands of tasks. The central server has no access to this
data, ensuring that data owners retain full control over their devices and data. In contrast,
DML provides the central server with comprehensive control over both the training data
and the workers.

– Security
DML poses a higher risk of data leakage as data and model parameters are disseminated
to workers via a communication network. Although encryption techniques can attenu-
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Fig. 1 The common FL system architecture

ate this problem, they also substantially inflate the computational and communication
costs of the system [107]. FL, in contrast, naturally mitigates data leakage risk as it does
not involve sharing raw data and all training occurs locally. However, even in FL, the
gradients shared with servers for global model training can potentially disclose infor-
mation about the training data [87, 262]. Consequently, several security techniques like
encryption and obfuscation should be deployed to bolster the security of system.

– Fault Tolerance
DML incorporates fault tolerance mechanisms to handle potential issues like worker
unavailability due to downtime [157]. To preempt system delays or failures, it might
be necessary to reserve additional resources in advance. Meanwhile, the fault tolerance
mechanism of FL focuses on two distinctive challenges. First, there is the prospect of
devices spontaneously dropping out of the system [193]. The second concern relates to
Byzantine attacks, where malicious participants intentionally use inaccurate data to train
their local models, and then submit these faulty parameters to the server, severely under-
mining the performance of the global model [35, 194]. To circumvent these challenges,
FL systems may deploy strategies such as allowing for a limited number of offline clients
or employing client anomaly detection algorithms to discern potential malicious activi-
ties.

FL, as a specialized manifestation of DML, facilitates model training without necessi-
tating data exchange, leading to significant enhancements in security and communication
efficiency. However, it also presents unique challenges. For instance, malicious clients may
attempt to exploit the global model or execute a range of malevolent attacks, such as infer-
ence attacks or poisoning attacks. To counteract these threats, integrating anomaly detec-
tion mechanisms to identify abnormal clients or updates might be a feasible solution. Yet,
one must be aware that the incorporation of multiple defensive mechanisms could inflate
communication and computation costs, potentially compromising the overall efficiency of
system.

2.3 System Architecture of FL

This section aims to present a comprehensive examination of prevalent open source FL sys-
tem architectures, encompassing TensorFlow Federated (TFF) [62], PySyft [164], FedML
[72], Federated AI Technology Enabler (FATE) [215], PaddleFL [11], and Rosetta [143].
In light of this review, we propose a generalized architecture for FL systems, as depicted
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in Figure 1, which comprises three core constituents: the infrastructure, algorithm, and user
service.

– Infrastructure
The infrastructure component within an FL system encompasses resource management,
training data, and the communication architecture. Managing resources to accommodate
model training while attenuating computing bottlenecks, such as Graphic Processing
Units (GPUs) [45] and Tensor Processing Units (TPUs) [86], is a pivotal challenge in the
FL systems. Notably, TFF, PySyft, and FedML offer support for both Central Processing
Units (CPUs) and GPUs. Training data in FL is provided by the devices, necessitating a
large volume to enhance prediction accuracy, yet the non-uniform and Non-IID nature of
training data across devices imposes additional complexity in model training [185,256].
The communication architecture in an FL environment can follow either a centralized
or decentralized framework. A centralized architecture involves a central server that
aggregates parameters from devices and broadcasts the updated model, while a decen-
tralized architecture permits devices to directly update their models by communicating
with neighboring devices.

– Algorithm
The algorithm component within an FL system constitutes models, privacy-preserving
mechanisms, and incentive mechanisms. Devices in FL systems typically collaborate
to train a model that addresses specific machine learning challenges. Neural Networks
(NN), tree models, and linear models are widely utilized, each with distinct advantages.
NN models have been recognized for their top-tier performance across various applica-
tions, such as image classification. However, tree and linear models are often preferred
for their comprehensibility and effectiveness. It is noteworthy that NN models typically
require labeled data for most tasks. In addition, ensemble methods [192] have been pro-
posed to bolster system performance and accuracy by amalgamating multiple models.
Although FL provides a mechanism for training models without raw data sharing, the
interaction processes within the system can potentially leak sensitive data or models. To
counteract these privacy issues, encryption and obfuscation techniques are extensively
implemented in FL systems. Encryption techniques, such as Homomorphic Encryption
(HE) and Secure Multi-Party Computation (MPC), protect data during the communica-
tion process, whereas obfuscation techniques, including DP [6, 19, 66], introduce noise
to safeguard data. Notably, TFF and FedML support DP, FATE supports cryptographic
methods, and both PySyft and PaddleFL cater to DP and cryptography.
The role of incentive mechanisms in FL systems is to reward participants for their con-
tributions, encouraging sustained participation and model sharing. These mechanisms
employ either positive or negative incentives, which respectively aim to motivate partic-
ipants through rewards or deter harmful actions by imposing penalties. A fair evaluation
metric to gauge the contribution of each participant can attract more participants, and re-
wards can then be allocated accordingly [197,238]. Blockchain-based incentive systems
have been gaining substantial attention, as they can document participant training activ-
ities and compensate active contributors with cryptocurrency [12,174,218]. In addition,
to enhance the scalability of the system and reduce performance bottlenecks, we em-
ploy blockchain sharding technology to enable parallel model training across multiple
shards [155]. This technique divides the blockchain network into several smaller, inde-
pendent segments (known as "shards"). Each shard independently processes transactions
and verifies blocks, thereby increasing the overall network throughput and processing
capacity.
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– User Service
The user service component within an FL system provides functionalities such as al-
gorithm Application Programming Interfaces (APIs), monitoring tools, and simulation
capabilities. Simulations enable rapid efficacy evaluations of an algorithm by mimicking
collaborative training across multiple devices. These pre-deployment evaluations expe-
dite the decision-making process for real-world applications. Operational issues can be
identified and resolved in a timely manner through monitoring and statistical analy-
sis of the model training process. APIs serve to facilitate algorithm execution and cus-
tomization to meet user-specific requirements. Most open-source FL systems currently
support macOS and Linux platforms, aligning with developer needs. While TFF and
PySyft provide comprehensive building blocks for FL process implementation, FATE,
Rosetta, PaddleFL, and FedML offer algorithm-level APIs for direct utilization. More-
over, the FATE-Board visualization module provides a graphical depiction of data de-
rived from tracking, statistics, and monitoring of the model training process, enhancing
interpretability.

3 Security and Privacy of FL

In the realm of DML, robustness denotes the capacity of system to efficiently counteract
or mitigate security threats. FL, characterized by its reliance on distributed devices, en-
ables cooperative model training without necessitating the sharing of raw data. The dis-
tributed architecture intrinsic to FL intensifies the intricacy of detecting vulnerabilities and
potential adversarial interventions [87]. The threats to the integrity of an FL system can
be principally classified into two categories, i.e., non-malicious failures and malicious at-
tacks. Non-malicious failures are inadvertent system impairments emanating from inherent
vulnerabilities. Examples encompass device malfunctions, the introduction of overly noisy
training datasets, and unpredictable participant behaviors. Malicious attacks are deliberate
infringements orchestrated by adversaries aiming to compromise the FL system. Such at-
tacks encompass data and model poisoning, adversarial manipulations, and inference-based
assaults. While tailored strategies can be designed in advance to counteract malicious in-
cursions, non-malicious setbacks often manifest unpredictably. Remediation for the latter
is frequently reactive, necessitating post-incident solution formulations. To bolster the ro-
bustness of FL frameworks, it is imperative to meticulously assess the spectrum of potential
security breaches and to proactively design and integrate mechanisms that can deter or neu-
tralize them. Subsequently, we delve into a comprehensive discourse on the multifaceted
security and privacy concerns inherent to FL architectures.

3.1 Non-Malicious Failures on FL

FL systems, despite their distributed promise, grapple with vulnerabilities stemming from
both hardware and systemic discrepancies [172]. At the hardware echelon, failures often
manifest as a consequence of infrastructural malfunctions. Such malfunctions can be at-
tributed to a myriad of sources, from subpar equipment quality to exogenous factors includ-
ing environmental calamities or inadequately maintained apparatus.

These inherent system susceptibilities serve as potential gateways for adversaries, en-
abling them to leverage exploits ranging from malicious code injections to Distributed De-
nial of Service (DoS) offensives [14]. Compounding the intricacies are the challenges of
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noisy training data and participant unreliability [87]. The former can precipitate suboptimal
model performances, while the latter can, either inadvertently or with malice aforethought,
result in the exposure of sensitive training datasets.

Moreover, while the multifaceted functionalities of FL systems are tailored to accommo-
date diverse user prerequisites, this very versatility augments the complexity of the system,
potentially exacerbating its vulnerability footprint.

3.1.1 Risk Management

Risk management within computational domains encapsulates a triad of cardinal compo-
nents: assessment, control, and surveillance [203]. Assessment: This phase is devoted to the
recognition and quantification of potential risks, encompassing both system vulnerabilities
and adversarial intrusions. It emphasizes discerning the nature of these threats and prognos-
ticating their potential ramifications on the computational infrastructure. Control: Rooted in
the analytics of the assessment phase, control prioritizes the deployment of mechanisms to
alleviate identified threats. Its objectives are manifold: to meticulously scrutinize potential
threats, curtail prospective damages, and to manifest robust security protocols. Surveillance:
This perpetual process underscores real-time oversight and feedback mechanisms to gauge
the efficacy of the implemented security apparatus.

Within the ambit of FL, preempting and mitigating risks are of paramount importance
to uphold an impeccable security standard [172]. Two salient strategies emerge to fortify
security. Environment Fortification: The inception of a fortified computational milieu, ex-
emplified by a Trusted Execution Environment (TEE) [76], offers a bulwark against many
extant risks. Dynamic Risk Surveillance: Constructing a dedicated surveillance module can
yield dividends in proactively identifying and mitigating security anomalies. Such a module
functions ceaselessly, scrutinizing the FL framework for aberrations, thereby enabling the
formulation and deployment of nimble preventive stratagems.

TEE emerges as a hardware-centric approach to privacy-preserving computations. This
solution empowers remote users to execute computational tasks on a device, effectively
cloaking the intricacies of the computations from the hardware fabricator. Leveraging spe-
cialized CPU registers and ensuring memory isolation or encryption, TEE fosters a sanc-
tuary for secure computations [76]. As the trustworthiness of the TEE is ascertained, the
platform extrapolates a cryptographically secure interaction milieu between devices, poten-
tially amplifying the efficacy of collaborative endeavors like FL [39, 149]. Within the FL
context, TEEs are perceived as potent aggregation centers, streamlining parameter consoli-
dation [251]. A nascent exploration into blockchain-augmented TEEs hints at an inviolable
approach, rendering local model manipulations futile [89]. Additionally, the integration of
a TEE-oriented proxy component can fortify the confidentiality of FL participants, ensur-
ing the integrity of updates dispatched to servers [20]. Notwithstanding its commendable
efficacy, the resilience of the TEE is tethered to its foundational hardware schema [253],
rendering it potentially susceptible to specific adversarial interventions, such as data poison-
ing exploits [151].

The overarching paradigm of risk surveillance and governance encompasses meticulous
oversight of the entire training lifecycle, spanning risk detection, quantification, assessment,
and redressal. The quintessential objective herein is to refine the security stratagem and
ascertain alignment with stipulated security benchmarks. Through real-time oversight, po-
tential adversarial vectors and insufficiencies in security postures are unveiled, thus paving
the way for timely recalibration of protective measures.
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In FL, a dedicated surveillance component is pivotal to oversee the process of train-
ing and system dynamics. Such a component, while granting developers granular feedback,
simultaneously facilitates risk attenuation. An example of this ideology is the FATE frame-
work, which boasts the FATE-Board module. This visual interface meticulously chronicles
task execution trajectories and model performance metrics [215], engendering an enhanced
oversight mechanism for FL systems. This operational transparency aids risk elucidation
and sanctions dynamic recalibrations of the security posture.

3.2 Malicious Attacks on FL

Within the expansive landscape of computational systems, certain vulnerabilities possess the
propensity to critically perturb both the functional and computational efficiency of a system
[153]. Astute adversaries, having discerned these susceptibilities, are equipped to orchestrate
intricate intrusions that imperil system integrity [17, 102, 154, 247]. Compounding these
complexities is the presence of malevolent participants, who, embedded within the network
of the system, can initiate a myriad of sophisticated threats [104, 105]. These range from
poisoning offenses [9] and Byzantine stratagems [35, 194], to intricate inference attacks
[190].

In the ensuing discourse, we delve into a meticulous examination of prevalent adversar-
ial modalities afflicting FL architectures: poisoning incursions, adversarial maneuvers, and
inference transgressions. Please note that the onslaughts of both poisoning and adversarial
character predominantly manifest during the intricate training phase of FL.

3.2.1 Poisoning Attacks in FL

Poisoning attacks, insidious by nature, are orchestrated through the intentional adulter-
ation of training datasets, aiming predominantly at the degradation of model efficacy. A
dichotomous classification bifurcates these attacks into “data poisoning” and “model poi-
soning” [213].

Data Poisoning: This strand comprises two predominant subsets. The first, “label-flip“
attacks, involves the surreptitious manipulation of label metadata within the training set, in-
ducing significant deviations in model targets and consequent attenuation of accuracy [224].
The latter, termed “clean-label“ attacks, are characterized by the subtle modification of the
training dataset, or the infusion of strategically erroneous data, inevitably leading to the
degradation of model precision.

Model Poisoning: This paradigm hinges on the direct manipulation of model parame-
ters or its architecture. Canonical examples include backdoor attacks, wherein the global
performance of the model remains ostensibly unaffected, while yielding skewed results for
specific input domains [33, 64, 188].

FL is acutely susceptible to poisoning attacks, given its unique architectural tenets.
The inherent data heterogeneity in FL, often manifesting as non-Independent and Identi-
cally Distributed (non-IID) data, culminates in localized model variations across devices
[50, 222, 229]. Further exacerbating the vulnerability is the systemic design where the cen-
tral server remains detached from the granularities of the training process, rendering the
validation of device-originated updates a formidable challenge [54, 246]. In addition, re-
cent works have presented federated unlearning [32] as a solution to the challenges posed
by data heterogeneity in FL [208]. Through the targeted removal of particular local data,
these methods interfere with the specific knowledge that the system derives from such data,
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Table 2 Defense Methods of Poisoning Attack

Attack Types Defense Type Algorithm Year Description

Data Poisoning Data Preprocessing

AUROR [191] 2016 The method uses a clustering algorithm to detect anomalous
training data.

Carlini et al., [28] 2018 This method is based on statistical methods for preprocessing
training data.

Zhang et al. b [252] 2021 The security measures are based on a random selection of
clients to reduce the impact of malicious participants.

Client-Side Detection [254] 2021
The security mechanism randomly selects a group of clients to
evaluate the model, and the server adjusts the weight according
to the results.

SEAR [255] 2021
The method is based on data sampling, and it can effectively
detect Byzantine faults without reducing the performance of
the model.

FLDebugger [96] 2022 The framework includes a debugging module to reduce the im-
pact of incorrect training data.

Molel Poisoning

Anomaly Detection

Sniper [25] 2019 The method uses Euclidean Distance between local models to
detect malicious participants.

FoolsGold [56] 2020 The method uses Cosine Similarity between device updates in
order to detect malicious participants.

PEFL [129] 2021
The method compares the encrypted gradient vector with the
median vector distance in order to detect malicious partici-
pants.

CONTRA [8] 2021 The method uses Cosine Similarity to determine the credibility
of local model parameters in each round.

Chen et al., [40] 2021 The method uses two anomaly metrics, namely the relative dis-
tance and the convergence measure to detect anomalies.

Ma et al., [139] 2022 The method evaluates the distance between two encrypted gra-
dients in order to detect malicious updates.

Model Robustness

SFPA [140] 2020 The framework is based on multi-key computation for address-
ing the leakage of a single key.

FL-Block [175] 2020 This framework uses blockchain technology to prevent poison-
ing attacks.

Hashgraph-based Method [249] 2021 The method uses hash graphs to protect user privacy and detect
malicious participants.

RoFL [22] 2021 This security mechanism is based on zero-knowledge proof,
and enhances security aggregation.

Turbo [195] 2021 The method employs a multi-group circular strategy for model
aggregation to increase system robustness.

SparseFed [165] 2022 This method is based on gradient clipping in order to protect
against poisoning attacks.

thereby enhancing local data privacy [263]. Lastly, the sheer voluminosity of participating
devices in FL amplifies the complexity of anomaly detection, often obscuring the malicious
entities operating within this extensive landscape [15, 55].

3.2.2 Adversarial Attacks in FL

Adversarial attacks, characterized by the strategic infusion of minuscule alterations within
training datasets, are tailored to mislead target models [225]. Remarkably, these diminutive
alterations can precipitate significant aberrations, including misclassifications. Grounded on
the extent of model knowledge available to the attacker, adversarial attacks bifurcate into
white-box, gray-box, and black-box categories.

White-box Attacks: Predicated on the presumption that the attacker has comprehensive
knowledge about the architecture and parameters of the target model, these attacks fab-
ricate adversarial examples to directly misguide the model. Seminal algorithms, such as
the BFGS attack [202], ascertain misclassifications by discerning the minimal loss func-
tion perturbations. Techniques like FGSM [61] and its iterative counterpart, I-FGSM [93],
employ gradient step computations to generate these adversarial exemplars. The DeepFool
algorithm [152] and the JSMA method [167] further delineate efficient adversarial example
creation by computing minimal requisite perturbations and exploiting forward propagation
derivatives, respectively.
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Table 3 Defense Methods Of Adversarial Attack

Algorithm Year Description Defense Type

HGD [110] 2018 The method adds denoising techniques to the model to reduce the error introduced by adversarial
samples.

CompleteAGKD-BML [210] 2021
The framework uses knowledge distillation techniques [48, 116] to develop a teacher-student
model. Attentional knowledge is extracted from the teacher model and it is transferred to the stu-
dent model to increase model accuracy by focusing on the correct region.

FDA3 [198] 2020 The framework includes an attack monitor module that is used to record attack information, and
conduct adversarial retraining.

DNE [261] 2020 This method minimizes adversarial perturbations by randomly sampling and replacing words.
GDMP [211] 2022 The method uses diffusion models as a preprocessor to denoise the input.

RSLAD [264] 2021
The framework uses knowledge distillation techniques to develop a teacher-student model to learn
new labels associated with the new data, and then utilizes the student model to ensure security of
the new labels.

SafetyNet [132] 2017 The method detects perturbations in an image.

Detection
MagNet [147] 2017 The method uses one or more external detectors to classify an input image as adversarial or clean.

Feature squeezing [233] 2017 The method compares the prediction results between the original image and squeezed images.
ZeKoC [41] 2017 The method uses a clustering algorithm to detect malicious participants.

Gray-box Attacks: Operating under partial knowledge of the target model, such as its
structure or training data, these attacks predicate on a surrogate model, trained using the
extant model knowledge. This surrogate assists in the generation of adversarial examples
[235].

Black-box Attacks: These attacks, characterized by a lack of intrinsic knowledge on the
part of the attacker about the target model, employ gradient estimations to craft adversarial
examples [37]. Distinctive methodologies encompass evolutionary algorithms [148], meta-
learning paradigms [49], and Bayesian optimization techniques [183]. Notably, the transfer-
ability of adversarial examples across models renders black-box attacks particularly potent,
facilitating the potential compromise of unrelated models [75, 166].

In the context of FL, the decentralized nature and dynamic participation render it sus-
ceptible to adversarial attacks. The omnipresent global model parameters render white-box
and gray-box attacks more plausible. Conversely, black-box attacks, albeit hindered by pro-
longed query durations and diminished efficacy, present a more latent threat, given the sys-
temic predomination of the global model in FL.

3.2.3 Inference Attacks in FL

Inference attacks in machine learning pivot on exploiting the model to unveil obscured train-
ing data or discern sensitive attributes. Predicated on the kind of information being pursued,
these attacks bifurcate into property inference attacks and membership inference attacks.

Property Inference Attacks: These attacks endeavor to deduce concealed or fragmented
attributes leveraging overtly available properties or data distributions [141]. As an exem-
plar, within a recommendation system paradigm, a malevolent entity could discern pivotal
attributes such as age, gender, or even deeper personal nuances based on the evident model
outputs—like frequent purchase patterns or items earmarked as intriguing.

Membership Inference Attacks: Operating on the juxtaposition of the target model and
a data exemplar, these attacks endeavor to ascertain the affiliation of the sample with the
training set of the model, probing if it was pivotal during the training epoch [206].

FL manifests as a decentralized learning paradigm where clients retain their data and
disseminate specific parameters, predominantly gradients, to a centralized entity for syner-
gistic model training. Notwithstanding its decentralized veneer, FL is inherently susceptible
to nefarious incursions, particularly from malicious system participants. These malevolent
entities may be embodied as either a client or a server.



Trustworthy Federated Learning: Privacy, Security, and Beyond 13

Server-Side Adversaries: A compromised server, privy to intricate nuances of the local
training model (spanning model architecture, client identities, and gradients), possesses the
prowess to decipher concealed client attributes, a manifestation of property inference attacks
[170]. Such entities may also employ Generative Adversarial Networks (GANs) to reverse-
engineer client updates, endeavoring to recreate the original training data [196, 214].

Client-Side Adversaries: These malefactors, leveraging the periodic updates from spe-
cific clients, can deduce intricate and sensitive client data [145]. The adversarial landscape
also encompasses the perpetration of continuous spurious data injections, convoluting the
training regime. Such incursions, colloquially termed poisoning attacks, can precipitate in-
advertent divulgence of sensitive attributes [73, 228].

3.3 Defensive Paradigms in FL Systems: Approaches and Classifications

In the intricate landscape of FL systems, malevolent incursions manifest in multifarious
guises, necessitating a diverse repertoire of defense mechanisms. Distinct defense stratagems
are earmarked based on the potential location of the attack, i.e., on device or server side,
while overarching security measures often pivot on systemic robustness [137]. The threat
landscape in FL encompasses potential adversaries domiciled either within client devices or
centralized servers.

A salient stratagem to bolster security, especially against compromised servers, amalga-
mates the principles of distributed architectures combined with advanced encryption method-
ologies. From a broader perspective, defense mechanisms in FL can be dichotomized into
two predominant categories: proactive and reactive defense paradigms [154]. Proactive De-
fense: As the nomenclature suggests, proactive defense initiatives prognosticate potential
threat vectors, orchestrating and deploying defense mechanisms a priori to forestall the
actualization of anticipated attacks. Reactive Defense: Reactive defense mechanisms are re-
actionary, coming to the fore post facto, in the aftermath of an attack detection, working
towards mitigation and remediation.

3.3.1 Countermeasures for Poisoning Attacks

FL systems have witnessed the proliferation of diverse poisoning attacks during the train-
ing phase, prompting the genesis of specialized countermeasures. This discourse delineates
these defensive mechanisms, specifically addressing data and model poisoning attacks. A
categorization complemented by paradigmatic defenses against these attacks, informed by
extant literature, is encapsulated in Table 2.

Defensive Strategies for Data Poisoning Attacks: The fulcrum of defenses against
data poisoning pivots on two crucial pillars: the reliability and integrity of the training
data [60]. Reliability underscores the authenticity of training data, and integrity ensures
alignment with global data distributions and prescribed formats. Notably, defense measures
are discerned from a data-centric protective lens. Methods like random sampling of training
data [16,65] and anomaly detection have demonstrated efficacy. However, in a multi-device
FL milieu, challenges persist, particularly in the selection of honest computing nodes. Tech-
niques ranging from rule-based [252, 254] to sampling-based data selection [252, 255], and
data purification [28, 211, 221] have emerged in response. The AUROR framework, uti-
lizing the Euclidean distance metric, exemplifies how poisoned data can be identified and
culled [191]. Nonetheless, these methodologies are not bereft of challenges, with the pursuit
of an optimal balance between performance and security remaining elusive [60].
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Table 4 Defense Methods Of Inference Attack

Algorithm Year Description Defense Type

VerifyNet [230] 2020 The framework employs a double-masking protocol to ensure the confidentiality
of the gradient.

Encryption
Privacy-preserving entity resolution [71] 2017 The method use HE to preserve privacy in VFL.

FedMONN [146] 2020
The framework with an encoder-decoder architecture. While the client encrypt-
ing updates, the server decrypts them, and protects the privacy of updates during
transmission.

MemGuard [81] 2019 The method can mislead attackers by adding noise to each confidence score vec-
tor predicted by the target classifier.

Obfuscation
Gradient noise [90] 2021 The method inserts Gaussian noise to gradients to defend against attacks.

Client-level DP algorithm [59] 2017 The method randomly selects some devices to compute perturbation values ran-
domly, and updates the central model using these perturbations.

CoAE [130] 2022 The method replays the label of the training set to defend against inference at-
tacks.

Digestive Neural Networks(DNN) [95] 2021 The method uses DNN to transform the data of the training set in order to protect
privacy.

Privacy-Preserving FL [205] 2019 The method combines DP with MPC and reduces noise injection as the number
of parties increases.

Hybrid Method
Extensions based on Sharemind [169] 2015 The method combines DP with Sharemind (a MPC platform) for the purpose of

protecting the privacy of data providers and individuals.

SGD based method [70] 2019 The method combines HE and DP to ensure data privacy and reduce communi-
cation costs.

Defensive Strategies for Model Poisoning Attacks: To handle model poisoning, the
emphasis shifts towards discerning malicious entities or spurious updates during the ag-
gregation phase. Model anomaly detection, typified by techniques such as measuring the
Euclidean distance among updates, emerges as a potent tool for isolating aberrant mod-
els [8, 25, 40, 129, 139]. Another avenue is assessing the contribution of each device [56].
Enhancing the inherent robustness of models offers another bulwark against poisoning. This
can be achieved through myriad strategies: pruning the model [165, 249], fortifying with
encryption [22,140,195], or the integration of blockchain for integrity assurance [175]. Re-
training poisoned models has also been proposed as an effective countermeasure [198].

3.3.2 Countermeasures Against Adversarial Attacks

In FL, adversarial attack defenses can strengthen the robustness of the system by incor-
porating more data samples, e.g., adversarial training [226], data augmentation or com-
pression [186]. In addition, the defense capability of the system can also be improved by
anomaly detection, e.g., anomaly client detection [41], adversarial examples detection [110].
In general, defense methods can be divided into complete defense and detection-only de-
fense [2]. A summarization of prevalent defense techniques is available in Table 3.

Complete Defense Mechanisms: Complete defense mechanisms aim to mitigate the
influences of adversarial examples by ensuring accurate classification during the training
phase. These countermeasures encompass strategies such as:

– Introducing an attack monitoring module for continuous vigilance and iterative model
refinement [198].

– Deploying knowledge distillation for accurate classification of adversarial samples via
teacher-student model configurations [115, 210, 264].

– Employing data augmentation techniques, wherein filters such as noise addition are in-
tegrated to restrain inaccuracies instigated by adversarial inputs [63, 110].

– Utilizing the diffusion model, where a clean datum undergoes controlled contamination
and subsequent iterative noise removal, offering a dual-process defense against adver-
sarial samples [43, 211, 221, 234]. However, this approach comes with computational
complexity, impinging on training efficiency [161].
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Detection-only Defense Mechanisms: Detection-only defenses prioritize identifying
adversarial samples without necessarily correcting them. Representative methodologies en-
compass:

– Leveraging data disturbances to pinpoint adversarial inputs [132].
– Utilizing compression techniques to gauge data variations pre and post-compression,

thereby discerning adversarial nuances [233].
– Incorporating external detectors within systems to continuously monitor and detect ad-

versarial entities [147].

Modern defense mechanisms grapple with the equipoise between efficiency and efficacy.
Adversarial training, albeit competent, remains computationally taxing and does not assure
comprehensive coverage against all adversarial samples, exposing its limitations [10, 46].
On the other hand, seemingly facile techniques like randomization and denoising, despite
their easy deployment, do not guarantee consistent defense efficacy [207].

3.3.3 Countermeasures Against Inference Attacks

The intricacies of FL systems include safeguarding a spectrum of sensitive information:
training data, model constituents (algorithms and parameters), and resultant outputs. A
breach in any of these facets can profoundly undermine the integrity of the system [106,262].
The plausible incorporation of malevolent entities further accentuates the vulnerability to
information exploits [154]. A synthesized overview of prominent defense strategies against
inference attacks is delineated in Table 4. Subsequently, we delve into the nuances of these
defense paradigms.

Encryption-centered Techniques: Integral techniques like HE and Secret Sharing (SS)
stand at the forefront of encryption practices. The prowess of HE lies in its ability to con-
duct operations on encrypted data directly, ensuring privacy throughout the computational
process [53, 71]. SS, on the other hand, involves the dissemination of key shares across
multiple entities, enabling decryption only by authorized coalitions [18]. Yet, the dual adop-
tion of encryption algorithms, while enhancing data sanctity, can inadvertently increase the
computational and communicational overheads in FL systems. The quintessential challenge
manifests as striking a balance between maintaining efficient training and assuring model
accuracy [53, 138, 244]. The encoder-decoder architecture offers a potential solution by al-
lowing devices to perform data encryption and servers to undertake decryption [146].

Obfuscation-centered Techniques: DP remains a pivotal technique, adding deliberate
obfuscation to the data or specific features, thereby ensuring that third-party entities are
unable to distill individual raw data from device-transferred information [6,81,227]. Current
obfuscation techniques predominantly involve the infusion of Laplacian or Gaussian noise
[90,109,216]. Augmenting training data or manipulating label information further intensifies
data obscurity [95, 130]. Nonetheless, the dilemma persists: excessive noise infusion may
degrade model precision, while sparse noise addition might inadvertently expose training
data [59, 179].

Hybrid Techniques: Considering the constraints intrinsic to pure encryption or ob-
fuscation techniques, hybrid methods like MPC emerge as a promising alternative [169].
Contemporary MPC protocols, coupled with DP technologies, aim to both preserve data
privacy and curtail communicational overheads [70]. Modulated noise injection further re-
fines model accuracy [205].
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As the narrative underscores, while there exists a plethora of defense mechanisms,
achieving an optimal trade-off between model accuracy and robust defense against infer-
ence attacks remains a persistent challenge in the realm of FL.

4 Application of FL

Users and policymakers are increasingly aware of the importance of data security and pri-
vacy within FL systems. This has led to a surge in research on privacy-protection measures,
and data access is being scrutinized more closely.

As FL continues to evolve and be adopted across various industries, it is important to
recognize and address the potential vulnerabilities and risks inherent in these applications.
By doing so, we can design more robust and secure FL systems that can withstand spe-
cific attacks targeting these applications. FL is currently applied in various areas, such as
healthcare [88,133,180], IoT [159], autonomous vehicles [135,242], finance [187], wireless
technology [150], and recommendation systems [260].

4.1 Healthcare

In healthcare, FL is used to allow medical institutions to train models independently using
their local data, ensuring patient privacy [99,156]. However, a major vulnerability arises due
to the sensitive nature of healthcare data. An attack could potentially disrupt the learning
process, inject malicious models, or leak sensitive patient information [231]. Techniques
such as DP and MPC can help mitigate these risks, but they need to be carefully incorporated
to maintain the balance between privacy and model performance [142].

4.2 Finance

In the finance industry, FL allows institutions to share insights without disclosing sensitive
data, thus maintaining privacy [187]. Yet, FL in finance also presents an attractive target for
adversarial attacks aiming to manipulate the consensus model for illicit financial gain, or
to compromise financial data confidentiality [13, 78]. Techniques such as robust aggrega-
tion and Byzantine fault tolerance can help build resilience against these attacks, but more
research is needed to optimize these defenses for finance-specific scenarios [23].

4.3 Wireless Communications

FL in wireless communications technology aims to preserve data privacy by training ma-
chine learning models in a decentralized manner [150]. However, this decentralization can
also introduce vulnerabilities as attackers may exploit insecure communication channels to
extract sensitive information or inject adversarial models [36, 52]. Additionally, jamming
attacks can pose a serious threat to the stability and security of wireless communication
networks, especially in dense network environments where attackers can use jamming sig-
nals to interfere with data transmission, reducing the effectiveness of FL model training and
prediction accuracy [74]. Solutions such as secure communication protocols and robust FL
algorithms are crucial, but challenges remain in designing these solutions to be both effective
and efficient in the wireless environment [128, 162].
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4.4 Smart Transportation

The application of FL in smart transportation presents unique challenges [184]. For instance,
attackers may target the decentralized nature of the data, aiming to compromise data related
to transportation systems or manipulate the consensus model, thereby causing safety haz-
ards. Furthermore, the real-time and mobile nature of smart transportation systems imposes
additional constraints on defenses [34, 171]. Techniques such as on-the-fly data encryption
and real-time anomaly detection can help secure FL in this domain, but their effectiveness
and impact on system performance need further investigation.

4.5 Recommendation Systems

Recommendation systems greatly benefit from FL as it allows for personalized recommen-
dations while protecting user data [5, 220]. However, the personalized nature of these sys-
tems also creates potential vulnerabilities [158]. An attacker might infer sensitive user infor-
mation from model updates, or manipulate the learning process to affect the recommenda-
tions. Privacy-enhancing techniques such as DP and HE can provide protection, but how to
effectively integrate these techniques in FL-based recommendation systems is an ongoing
research topic [108, 111, 112].

4.6 Smart Cities

Smart cities, encompassing traffic management, environmental monitoring, and utility ser-
vices, have become an emerging application for FL. The advantage of using FL lies in its
ability to process and learn from vast amounts of data generated by various sensors and
devices in the city while preserving privacy [68, 83]. However, this interconnectivity and
heterogeneity can expose the system to targeted attacks such as data poisoning or model
inversion attacks [3]. Ensuring data integrity, enforcing MPC protocols, and integrating
privacy-preserving techniques like DP are vital for mitigating these security risks. In ad-
dition, recent research has enhanced system resilience against local model manipulation by
integrating blockchain technology, significantly bolstering the capabilities of intrusion de-
tection systems to defend against sophisticated attacks [51].

4.7 Generative AI in FL

The rise of generative AI, especially Generative Adversarial Networks (GANs), offers new
possibilities in enhancing the defense mechanisms within FL systems. GANs, by their de-
sign, can play a pivotal role in identifying and mitigating data poisoning attacks, a significant
threat to FL environments [173]. For example, GANs can be used to generate synthetic data
that mimics the characteristics of poisoned datasets, which then helps in training FL mod-
els to recognize and reject malicious inputs effectively [94]. By incorporating GAN-based
strategies, researchers can advance the security measures necessary to protect decentralized
learning processes from evolving threats [248].
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5 Open Challenges and Future Directions

FL is a distributed learning technology that provides privacy protection. Despite FL enabling
devices to train a model without sharing raw data, several security and privacy concerns
persist. This section explores various challenges and future directions of FL systems.

5.1 Reliability and Security of Big Models

FL systems face unique challenges related to the size and complexity of deployed mod-
els. The number and capacity of devices involved in FL systems can limit the application
of large-scale models [181]. As computational resources and data volume increase, mod-
els scale up, often necessitating a larger amount of raw data for training. Consequently,
this leads to an increase in the number of model parameters and a more complex struc-
ture [240]. Examples of such large models include DALL·E [177] and DALL·E2 [176] for
text-to-image generation, and pre-trained language models such as Bert [44], GPT-3 [21],
and XLNet [236] designed for NLP tasks. The WuDao model [239], boasting 1.75 trillion
parameters, is an example of scaling up parameters to enhance performance across a broad
spectrum of machine learning problems [127]. Large models, despite their performance ad-
vantages, introduce a higher degree of vulnerability [29]. For instance, large datasets can ob-
scure maliciously introduced poisoning data, and existing defense methods might encounter
scalability problems when dealing with larger models [240]. Furthermore, these models are
more likely to inadvertently retain sensitive raw data [27, 204], posing considerable privacy
risks to the FL system [26]. Attacks such as inference attacks or data reconstruction attacks
present severe privacy risks to large models [30, 125, 240].

Given these risks, it becomes imperative to thoroughly understand the security and pri-
vacy implications of large-scale models within FL systems. Furthermore, current defense
methods must be critically evaluated and developed further to adequately address the risks
associated with these large models. While designing these defense methods, a crucial con-
sideration is to maintain the accuracy of the models. This balance can be achieved by inte-
grating privacy-preserving techniques such as DP or HE in the learning process, adopting
robust aggregation methods to limit the impact of malicious updates, and employing model
pruning or compression strategies to maintain model accuracy while reducing model size
and complexity. Ultimately, our goal is to devise defense strategies that effectively address
the security and privacy concerns of large-scale models within FL systems, without com-
promising their accuracy.

5.2 Dynamic Adaptive Defense Techniques

FL frameworks enable collaborative training across multiple institutions while ensuring pri-
vacy, data security, and compliance with regulatory requirements. These systems involve a
wide array of technologies, including infrastructure frameworks, data distribution and stor-
age, algorithms, communication, and deployment. However, storing training data locally in
FL systems presents a significant risk of data leakage or exploitation by malicious entities.
Moreover, the heterogeneity of the data can make it challenging to identify such attacks. Ad-
ditionally, vulnerabilities in system environments, such as clusters or cloud platforms, may
expose FL systems to security threats like Denial of Service (DoS) attacks and unauthorized
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access [14]. At present, no reliable method exists for quantitatively assessing the risk asso-
ciated with FL systems. While some static defense measures have been used to protect FL
systems, these often lack effectiveness and adaptability in the face of changing threat land-
scapes. Consequently, we propose the use of dynamic adaptive defense techniques. These
are security measures that monitor system status in real-time and adapt their defenses based
on identified threats and the specific application scenarios.

Dynamic adaptive defense techniques can help make FL systems more robust against
evolving threats. For example, traditional risk monitoring techniques can be enhanced by
incorporating real-time threat detection and adaptive response mechanisms. An application
of such a dynamic adaptive defense technique might involve monitoring the model updates
from each participant in an FL system and dynamically adjusting the response of the system
if suspicious activity is detected, such as outlier updates that might indicate an attack. Ad-
ditionally, the system could adapt its defenses based on the context of the application. For
instance, an FL system used in a healthcare setting might require stricter privacy controls
and might employ techniques like DP to dynamically adjust the level of noise added to the
data based on the sensitivity of the data being processed. In summary, dynamic adaptive
defense techniques can provide a more flexible and robust defense against security threats to
FL systems, and further research and development of these techniques should be a priority.

5.3 Lightweight Cryptography

FL offers a unique framework for institutions to collectively train a model without needing
to share data directly, ensuring compliance with legal and regulatory requirements. However,
existing FL approaches are not exempt from various security and privacy concerns. A ma-
licious participant could potentially extract sensitive information from the training results,
which could have an adverse effect on specific targets. Similarly, malicious servers may infer
training data from client updates, which could compromise the integrity of the global model.
Current solutions aim to enhance privacy by integrating techniques such as DP, MPC, or
HE [59,200,216]. Of these, MPC is growing in acceptance as a method to boost model per-
formance while maintaining security [232]. In addition, the emergence of blockchain tech-
nology has supplemented FL by offering a decentralized, traceable, and recordable solution.
Despite their benefits, these measures can potentially reduce model accuracy or efficiency.
For instance, MPC can be resource-intensive, pushing participants to lower the security level
to decrease data transmission costs and improve training effectiveness [38, 91]. In this con-
text, "low loss" refers to minimizing any reduction in model performance, including factors
like accuracy, precision, and recall, when incorporating cryptographic techniques. The term
"high efficiency" is defined as the capability to perform computations and data transmis-
sion swiftly with minimal resource usage. Considering these definitions, the need arises for
robust, privacy-preserving, and lightweight technologies that can ensure minimal loss in
model performance and high computational and communicational efficiency. By develop-
ing and implementing such techniques, we can achieve a better balance between security,
privacy, and performance in FL systems.

5.4 Performance Efficiency

In FL systems, cryptographic technologies are often used to enhance security and maintain
user privacy. Nevertheless, the inherent complexity of these technologies can compromise
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the overall system efficiency. This is seen in many applications where cryptographic tech-
niques are used extensively, leading to a substantial increase in computation time or other
resources.

Several strategies have been explored to mitigate this effect, such as the use of model
compression techniques [257] or minimizing communication costs [79], aiming to strike
a delicate balance between system security and computational efficiency. To illustrate this
trade-off, consider an FL system that employs advanced encryption for secure communi-
cation. While this method effectively preserves data privacy, it also incurs significant com-
putational overhead, resulting in decreased overall performance. Conversely, a less secure
but computationally lightweight encryption method might enhance system performance but
at the cost of reduced security. The challenge in setting a quantitative standard to balance
security and efficiency arises from the multitude of factors that contribute to both. System
security, for example, can be influenced by the strength of encryption, data anonymization
techniques, and robustness against attacks, among others. On the other hand, computational
efficiency may depend on factors like data volume, model complexity, and network band-
width.

While no solution fits all sizes for this issue, potential strategies might involve devel-
oping adaptive cryptographic techniques that adjust their level of security based on the
computational capacity of the system or using a multi-objective optimization approach that
balances both security and efficiency metrics. However, both of these approaches require
extensive research and careful implementation, highlighting the complexity of this chal-
lenge [67, 69].

6 Conclusion

In this paper, we provide an in-depth analysis of the current state of security and privacy in
FL systems, and we explore the core functionalities and architectures of these systems.

First, we outline FL systems and their distinctions from traditional DML, and review the
typical architecture layers of FL systems: user services, algorithms, and infrastructure.

Next, we discuss the security and privacy challenges faced at each architectural layer
of FL systems, identifying potential threats, including non-malicious failures and malicious
attacks, along with a overview of possible attack methods. To address these threats, we
analyze various existing defense mechanisms and emphasize the importance of building
a robust risk management framework. This framework integrates evaluation, control, and
monitoring phases to proactively identify and mitigate potential vulnerabilities within the
system, thereby enhancing overall system resilience.

Finally, we examine the diverse practical applications of FL, focusing on its use across
multiple industries and the associated security and privacy challenges. These include appli-
cations in healthcare, finance, wireless communications, autonomous vehicles, recommen-
dation systems, and smart city infrastructure. We also identify future research directions,
such as the reliability and security of large models, Dynamic Adaptive Defense Techniques,
system fault tolerance, and balancing privacy with model performance.
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