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Abstract

Current Large Multimodal Models (LMMs) empowered
visual grounding typically rely on <SEG> token as a text
prompt to jointly optimize the vision-language model (e.g.,
LLaVA) and the downstream task-specified model (e.g.,
SAM). However, we observe that little research has looked
into how it works. In this work, we first visualize the simi-
larity maps, which are obtained by computing the semantic
similarity between the <SEG> token and the image token
embeddings derived from the last hidden layer in both the
LLaVA encoder and SAM decoder. Intriguingly, we have
found that a striking consistency holds in terms of activation
responses in the similarity map, which reveals that what
<SEG> token contributes to is the semantic similarity within
image-text pairs. Specifically, <SEG> token, a placeholder
expanded in text vocabulary, extensively queries among in-
dividual tokenized image patches to match the semantics of
an object from text to the paired image while the Large Lan-
guage Models (LLMs) are being fine-tuned. Upon the above
findings, we present READ, which facilitates LMMs’ resilient
REAsoning capability of where to attenD under the guidance
of highly activated points borrowed from similarity maps.
Remarkably, READ features an intuitive design, Similarity
as Points module (SasP), which can be seamlessly applied to
<SEG>-like paradigms in a plug-and-play fashion. Also, ex-
tensive experiments have been conducted on the ReasonSeg
and RefCOCO(+/g) datasets. To validate whether READ
suffers from catastrophic forgetting of previous skills after
fine-tuning, we further assess its generation ability on an aug-
mented FP-RefCOCO(+/g) dataset. All codes and models
are publicly available at https://github.com/rui-qian/READ.

1. Introduction

Reasoning segmentation has been newly proposed yet largely
unexplored at present [15]. As an extension of classical
Referring Expression Segmentation (RES) [10], it aims to
output nuanced masks for implicitly referred objects given
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descriptive language expressions. As shown in Fig. 1, when
asked, “What part of the deer’s body in the picture is used
for defense and attracting mates?”, reasoning segmentation
infers “antler” without an explicit mention, in contrast to
traditional RES, which relies on direct referring. Solving
such intricate visual tasks is non-trivial, requiring models
to comprehend user intentions based on given queries while
also possessing pertinent world knowledge [42].

Recent works [15, 32, 35, 42, 43] have advanced reason
segmentation tasks by leveraging <SEG> token as a text
prompt to seamlessly align LMMs empowered visual en-
coder (e.g., LLaVA [21]) and the downstream task-specified
decoder (e.g., SAM [14]) in vision space for fine-grained
output formats, i.e., segmentation masks. Specifically,
SESAME [15] teaches LMMs to respond to false premises
by introducing negative samples into the pipeline. GSVA
[43] bridges the gap where the multiple-target and empty-
target cases are neglected. GLaMM [32] and PixelLM [35]
enhances the model both in textual and visual domains, with
versatile capability at various levels of granularity.

However, we observe that little research has looked into
how <SEG> token works when mapping language vocab-
ulary embedding into corresponding visual space. The
<SEG> token, an extended placeholder in the text vocab-
ulary, lacks inherent semantics on its own. However, when it
was inserted into conversation templates and jointly trained
with LMMs, ultimately being able to ground objects within
an image. Recent works [15, 42, 43] all employ the SAM
[14] model as a mask decoder. Initially, segmenting the red
region in Fig. 1 could be achieved by prompting SAM with
the text ”antler,” but now <SEG> token embedding fulfills
the same purpose in place. This leads us to ask: What is the
connection of embeddings between <SEG> token and text
prompt “antler” in terms of semantics?

Bearing this in mind, we begin by visualizing similarity
maps, which are generated by computing dot product simi-
larity between <SEG> token and image token embeddings
extracted from the last hidden layer in both LLaVA [21]
and SAM [14] models. Notably, we observe a striking con-
sistency in activation responses across this similarity maps,
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• USER: <im_start> <im_end> Some animals have unique physical features that they use for various purposes. What part 
of the deer's body in the picture is used for defense and attracting mates? Please output segmentation. 

• ASSISTANT: Sure, it is [SEG] .

(b) “antler” with CLIP (c) <SEG> (d) <SEG>(a) Points as prompt with SAM with LLaVA with SAM
Figure 1. Qualitative analysis of <SEG> token on ReasonSeg train split. Points derived from (c) serve as prompt with original SAM in (a).
Text “antler” with image token from CLIP is in (b). The similarity between <SEG> token and image token embeddings stemming from the
last hidden layer are obtained by Eq.(5), w.r.t. LLaVA encoder in (c) and SAM decoder in (d). The consistency in (b), (c), (d) indicates that
<SEG> token in LMMs learns semantics similar to those of direct mention in texts. Refer to Appendix B for more illustrations.

suggesting that <SEG> token is pivotal in bridging semantic
connections between textual prompts and their visual corre-
spondences. Specifically, <SEG> token, an expansion of text
vocabulary, initiates a thorough query across each tokenized
image patch, aligning the textual semantics of an object with
its visual counterparts in the paired image. Inspired by the
above findings, an intuitive idea is to see if we can imply to
the model where to “attend” by leveraging similarity maps.

To this end, we present READ, which facilitates LMMs’
resilient REAsoning capabilities of where to attenD, in-
formed by highly activated points stemming from similar-
ity maps. In particular, our READ consists of three core
modules: (1) a LLaVA encoder, (2) a Similarity as Points
module (SasP), and (3) a SAM decoder. Specifically, our
LLaVA [21] enhanced encoder consumes image-text pairs
as input to generate text output, from which the last hid-
den layer embedding for <SEG> token is then gathered. To
guide the model where to attend, our SasP module com-
putes similarity maps by performing a dot product between
the <SEG> token embedding and their associated image
patches, whereupon regions with high similarity scores are
then converted into point coordinates for fine-grained mask
predictions through the SAM decoder, along with textual
prompts, i.e. the <SEG> embedding. To address the chal-
lenge posed by discrete, non-differentiable points during
back-propagation, we apply a Gaussian-like weighted aver-
age interpolation to render them continuously differentiable.
This modification facilitates gradients across similarity maps
back to the LMMs, empowering the model to “reason to
attend” in the forwards, and “attend to reason” in the back-
ward and vice versa. Particularly, READ’s intuitive design,
SasP, can be effortlessly integrated into off-the-shelf <SEG>-
like paradigms with minimal overheads in a plug-and-play
manner. In summary, our contributions are threefold:
• We have looked into how <SEG> token works when map-

ping language vocabulary embedding into corresponding
visual space. Such investigation reveals that what <SEG>
token mainly contributes to is the semantic correspon-
dences from image-text pairs based on our findings.

• We present our model — READ, which empowers LMMs
to “reason to attend” and “attend to reason” vice versa.

Importantly, our intuitive and simple design, SasP, can
be effortlessly integrated into off-the-shelf <SEG>-like
pipelines with marginal overheads.

• We conduct extensive experiments on both the challenging
reasoning segmentation dataset and the well-established
RefCOCO(+/g) referring segmentation dataset. To see if
READ struggles with catastrophic forgetting of previous
capabilities, we also assess its generative performance on
the FP-RefCOCO(+/g) dataset. Our READ excels existing
state-of-the-arts a by remarkable margin, resulting in cIoU
improvements over baselines of up to 4.7% on ReasonSeg,
3.73% on FP-RefCOCO(+/g).

2. Related Work
2.1. Large Multimodal Models
Depending on the level of capabilities LMMs possess, we
categorize them into three different groups: (1) Multimodal
feature alignment, which aligns visual and textual features to-
ward a comprehensive multimodal understanding [1, 17, 46].
Flamingo [1] enables visual in-context reasoning through
cross-attention. BLIP-2 [17] utilizes a lightweight query-
based visual encoder to align image features with a frozen
language model. mPLUG-OWL [46] connects image en-
coders to language models via efficient prompts. (2) Instruc-
tion tuning for few-shot learning, which leverages instruc-
tion tuning to enable few-shot learning capabilities, allow-
ing models to obtain new skills even with limited samples
[16, 21, 49]. Otter [16] enhances LMMs with instruction-
tuning on the proposed MIMIC-IT dataset. LLaVA [21]
and MiniGPT-4 [49] combine a visual encoder for feature
extraction and align with text embeddings, effectively boost-
ing its capabilities across a range of vision-language tasks.
(3) Fused task and enhanced reasoning, which advances
LMMs’ reasoning capabilities with a unified interface for
versatile vision-centric tasks [28, 29, 39, 47]. VisionLLM
[39] unifies diverse visual tasks within a single language
model interface. Kosmos-2 [28] and DetGPT [29] inject
grounding capabilities into LMMs. GPT4RoI [47] allows
region-level understanding by constructing region-text pairs.
In contrast, our READ builds upon LLaVA [21] for world
knowledge and complex reasoning.
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2.2. Interactive Segmentation Models
Depending on whether the interactive capabilities are present
in the models, we archive literature into two groups: (1)
Non-interactive segmentation, which assigns class labels to
pixel-level in a scene (i.e., semantic segmentation [2, 24,
36]), or object-level of a scene (i.e., instance segmentation
[4, 7, 22]), or both of which simultaneously (i.e., panoptic
segmentation [12, 13, 44]). U-Net [36] features an encoder-
decoder architecture that incorporates skip connections to
preserve feature information. Mask R-CNN [7] introduces
an additional segmentation branch to Faster R-CNN [34],
allowing for object detection and instance segmentation in
parallel. PS [13] initially introduces the concept of panoptic
segmentation, defining it as the task of labeling every pixel
in an image, including both segmentable objects (like people
and vehicles, etc.) and unsegmentable ’stuff’ classes (such as
sky and road, etc.). (2) Interactive segmentation, which aims
to interact with human language, enabling models to segment
target objects based on descriptive texts, typically, Referring
Expression Segmentation (RES) [15, 32, 35, 42, 43]. GSVA
[43] boosts RES by enabling the identification of multiple
objects from a single description and recognizing absent
targets. GLaMM [32] and PixelLM [35] augment models’
capabilities in both textual and visual domains, showcasing
versatility across multiple levels of granularity. Closest to
our work, LISA [15] and SESAME [42] inject self-reasoning
capabilities into segmentation tasks, elevating RES into even
more advanced interactions, i.e., reasoning segmentation.

Note that aforementioned literature, w.r.t. RES leans on
<SEG> token as the intermediate connector to link the down-
stream mask decoder. Whereas, we observe that few inves-
tigations have looked into how it works so far. This work
aims to unveil how <SEG> token contributes to, whereupon
we present the proposed method, READ.

3. Reflection on Reasoning Segmentation
In this section, we first revisit the reasoning segmentation
task and then analyze the underlying mechanisms of how
<SEG> token works upon the prior state-of-the-art [15, 42].

3.1. Revisiting
Problem Definition: Let ximg ∈ Rh×w×c denote the input
image, where h, w and c are height, width, and channel of
the image, respectively. Consider the paired textual input,
denoted by xtxt, which could range from an explicit mention,
such as “antler” to an implicit expression like “part of the
deer’s body”. Reasoning segmentation primarily involves
the task of generating a segmentation mask M̂ such that
it aligns with the part of the image that corresponds to the
referenced query as

ΘMLE = argmax
Θ

Gθ
(
M̂|ximg,xtxt; Θ

)
, (1)

where Gθ indicates segmentation capabilities infused LMMs
parameterized by Θ. In this paper, it includes a multi-modal
LLM GT and a visual backbone model GV . Concisely, Gθ =
GT ⊕ GV , ⊕ denotes cascading operation. As illustrated in
Fig. 2, GT and GV are instantiated by LLaVA [21] and SAM
[14] accordingly. M̂ ∈ {0, 1}h×w, 1 indicates the presence
of the object and 0 otherwise.

To facilitate Gθ in a embedding as mask fashion, LISA
[15] extends the text vocabulary of GT with a placeholder,
i.e., <SEG> token. To allow LLMs to tackle image features
in the same way as text sequences, ximg is segmented into
patches of equal size and transformed by the CLIP [30]
model. During training, <SEG> token is embedded within
xtxt, and then both xtxt and ximg are fed into LMMs GT ,
which in turn generates a text responses ŷtxt as

ŷtxt = GT (ximg,xtxt). (2)

During inference, when Gθ is prompted interactively to out-
put a binary segmentation mask, the response ŷtxt would
include a <SEG> token if the object exists. LISA [15] then
retrieves the last hidden layer embedding h̃seg from GT
associated with the predicted <SEG> token, which then is
passed through a multilayer perceptron (MLP) projection
layer, denoted by φ to obtain the refined feature hseg. Con-
currently, the vision backbone GencV borrowed from SAM
[14] is employed to extract a rich set of visual features f
from the visual input ximg , represented by

hseg = φ(h̃seg), f = GencV (ximg). (3)

At last, visual features f are passed into mask decoder GdecV
to produce the final segmentation mask M̂ conditioned by
embedding hseg as

M̂ = GdecV (f ,hseg). (4)

hseg importantly bridges the intermediate layer, informing
the mask decoder to seamlessly decode the segmentation
mask in a way of end-to-end training. This paradigm has
been widely adopted by its successors [32, 35, 42, 43]. How-
ever, we observe that few investigations have looked into
how the embedding hseg works so far, which inspires us to
explore its underlying mechanism.

3.2. Analysis

To qualitatively analyze the <SEG> token, we visualize
the similarity maps at different stages of the forward pass
through Gθ in SESAME [42]. As illustrated in Fig. 1,
“<SEG> with LLaVA” denotes the similarity map between
the embedding of <SEG> token, i.e., hseg and the image to-
kens from the last hidden layer outputs. Activation responses
in (c) and (d) indicate that hseg signifies the model where
to “attend” somehow. Further, the consistency between the
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striking clues in (b) and (c) reveals that hseg plays a key role
in aligning with the semantics when bridging the interme-
diate layers. (b) is obtained by using the embedding of text
“antler” and visual features from CLIP [30], which indirectly
suggests that the <SEG> token has acquired semantics simi-
lar to those of the direct mention “antler” when prompted by
the implicit expression “part of the deer’s body”.

To quantitatively assess the effects of <SEG> token, we
conduct experiments, w.r.t. similarity maps. We first select
several points with the highest similarity scores as positives
and an equal number of points with the lowest similarity
scores as negatives. These points are then directly used as
prompts, rather than the <SEG> token, and input into the
original SAM model to generate the segmentation mask (see
Appendix 5). In Table 1, Pprompt reveals that only relying on
the selected similarity points can still generate a segmenta-
tion mask potentially (27.0%vs.30.4%). To further illustrate
to what extent the activated points within the similarity map
in (c) correspond to the target object in (a), we adopt the grid
search-based Intersection over Union (see Appendix A.1)
to validate the consistency between the similarity map and
the ground-truth mask. In Table 1, S IoU suggests that re-
sponses in the similarity map are strikingly consistent with
the ground-truth mask, with a 6% higher cIoU on ReasonSeg
test split (36.4%vs.30.4%) in the 2nd row.

Table 1. Quantitative analysis of <SEG> token on ReasonSeg test
split. Pprompt denotes points as prompt for original SAM [14].
S IoU measures the overlap (IoU) between the similarity map and
the ground-truth mask. <SEG>prompt denotes the <SEG> token as
prompt for the adapted SAM, a.k.a. LISA [15].

Method
Pprompt S IoU <SEG>prompt

gIoU cIoU gIoU cIoU gIoU cIoU

LISA-7B [15] 38.2 30.1 32.1 34.1 47.3 48.4
SESAME [42] 35.9 27.0 32.5 36.4 30.5 30.4

Summary. In summary, by analyzing the effects of <SEG>
token, we observe the following: (a) The <SEG> token in
LMMs learns semantic features similar to those of direct
mentions in texts and aligns these textual semantics with its
visual space to control the generation of segmentation mask.
(b) The activated points within similarity maps imply the
locations of the target object, which to some extent provides
feedback on where the model is focusing. Understanding
how the <SEG> token works is crucial as it is closely tied to
the issue of semantic alignment within LLMs. <SEG> token
offers insights into the experimental observation that, when
prompting LISA [15] for reasoning explanations, the textual
outputs from the LLaVA encoder remain accurate, even for
cases where the SAM decoder fails in segmentation. These
reflections motivate us to directly leverage similarity points
to guide the model where to “attend” when reasoning. For
more analysis, please see the Appendix B.

4. Proposed READ

In this section, we present READ, which unlocks LMMs’
resilient reasoning capability of where to “attend” under the
guidance of highly activated points derived from similarity
maps. As shown in Fig. 2, the proposed READ includes:
(a) an LLaVA encoder, (b) a Similarity as Points Prompter
(SasP), and (c) a SAM decoder. In READ, we first use the
LLaVA encoder to take image-text pairs as input, which in
turn responds to text as outputs. We then extract the embed-
ding of <SEG> token and image tokens from the last hidden
layer of the LLaVA encoder to compute the similarity map,
upon which we employ our Discrete to Continuous sampling
(DtoC) to convert highly activated foreground points into
continuous ones. Finally, these continuous points along with
<SEG> token embedding are fed into the SAM [14] decoder
for mask generation. As these points are differentiable, loss
will be backpropagated to LMMs to signify GT “where to
attend” when reasoning. Given that our innovation mainly
lies in SasP, we discuss it first in Sec. 4.1.

In what follows, we present the LLaVA encoder in
Sec. 4.2. SAM [14] decoder in Sec. 4.3, and the Training
objectives of READ are detailed in Sec. 4.4.

4.1. Similarity as Points

Points as Prompt. Inspired by various types of prompts
supported by SAM [14] mask decoder, such as bounding
boxes, points, and dense mask, etc., we explore how to
derive the points of interests as prompt in the input image
ximg via the similarity score. Specifically, denote h(lk) ={
h
(lk)
1 , ...,h

(lk)
Nk
|h(lk)

i ∈ Rd
}

as the hidden state output at
the k-th layer of GT , where Nk denotes the number of hidden
state tokens, and d is the embedding dimension. hseg in
Eq. (3) can be represented as h(lk)

seg ∈ h(lk). In the course
of training, the image features are incorporated into the
text instruction xtxt and fed as input to the LLM. Hence,
the hidden state output at the k-th layer, h(lk), includes Nt

image tokens, denoted as h(lk)
img ⊆ h(lk). We formulate the

similarity score between <SEG> token and image tokens as

S = h
(lk)
img ·

(
h(lk)
seg

)T

, (5)

where S denotes similarity score between each image token
and the <SEG> token, S ∈ RNt . Note that our vanilla
similarity score is parameter-free, which could be easily
amenable to <SEG>-like paradigms with negligible efforts.
Since this paper primarily aims to explore how <SEG> token
works, we leave designing possibly more effective similarity
computation strategy for our READ as future work, such as
using cross attention [38] to acquire learnable fine-grained
patterns. Nevertheless, Eq. (5) is already sufficient enough
to generate the necessary clues according to (c) in Fig. 1.
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What part of the deer's body in 
the picture is used for defense 
and attracting mates?

It is [SEG].

LLaVA
Encoder LoRA

Prompt Encoder
(Sparse Embedding:       )

SAM
Encoder

SAM
Decoder

Trainable
Frozen
Positive
Negative
ContinuousDiscrete to ContinuousSimilarity as

Points

Figure 2. Overview of our proposed READ. The hidden state outputs with respect to the <SEG> token and image tokens are derived from
the LLaVA encoder for similarity as points, before being fed into the prompt encoder for sparse embedding. To inform the model where to
“attend” when reasoning, we apply a Gaussian-like weighted average interpolation to transform discrete points into continuous ones.

To facilitate similarity score as point prompt, we restore
the coordinates over three types of points in ximg, i.e., pos-
itive, negative, and neutral points. Positive points denote
those that are confidently associated with an object or the
foreground. Negative points denote those that are confi-
dently associated with the background. Neutral points de-
note those that are not clearly identifiable as belonging to
either the object or the background, which could be near
object boundaries, ambiguous regions, or areas. To this end,
Algorithm (1) outlines the procedure: (i) In Steps 1-3, we
normalize the similarity score S and set the thresholds for
positive and negative points based on the mean µ and vari-
ance σ of S. (ii) In Steps 6-7, we recovery each selected
point j with the absolute coordinates. (iii) In Steps 8-10,
since the point selection process involves operations such as
sorting, j becomes a discrete, non-differentiable value. To
allow for gradient backpropagation, we apply a Gaussian-
like weighted average interpolation to obtain continuous,
differentiable coordinates. The weights are computed based
on the distance to each grid point. After that, point set P
along with <SEG> token embedding h(lk)

seg is fed into GdecV
as input, we reformulate Eq. (4) as

M̂ = GdecV (f ,h(lk)
seg ,P). (6)

The shift from discrete points to continuous, differentiable
ones is crucial, as the gradients propagated backward during
training are expected to guide the model in refining its focus.
If the similarity score of background points is higher, causing
positive points to fall within the background, it will degrade
the mask result and increase the corresponding loss, which

in turn, penalizes the model and encourages it to learn where
to “attend”. Considering that Steps 8-10 form the core of
SasP, we go through it in detail.

Discrete to Continuous. Let gx and gy represent the co-
ordinates of grid points, and (xj , yj) denote the coordinates
of the selected point j. By using distance-based weights and
normalized softmax probabilities, the sampling process will
be continuously differentiable with respect to selected point
(xj , yj) in the limit as the grid resolution increases. Specifi-
cally, the weight for each grid point is computed based on
the distance to the selected point, using an exponential decay
function. This ensures that closer points have higher weights,
and farther points have lower weights as

wj
i = exp

(
−dji

)
, (7)

where dji denotes the distance between grid point i and the
selected point j. To incorporate both the distance weight and
the softmax probability pi (from the similarity map S), the
final weight for each grid point is computed as

w̃j
i = wj

i · pi, pi =
exp (Si)

Σi′ exp (Si′)
. (8)

These weights are normalized so that their sum equals 1,
ensuring that they form a valid probability distribution as

ŵj
i =

w̃j
i

Σi′w̃
j
i′

, (9)

where the sum is taken over all grid points i′. Finally, the con-
tinuous coordinates (x̂i, ŷj) for each selected point (xj , yj)
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are computed by taking a weighted average of the grid coor-
dinates, using the normalized final weights ŵj

i as

x̂j =
h×w

Σ
i=1

gx,i · ŵj
i , ŷj =

h×w

Σ
i=1

gy,i · ŵj
i , (10)

where gx,i and gy,i are the x-th and y-th coordinates of
grid point i, respectively. Given that the weight function
exp

(
−dji

)
decays smoothly with the distance between gi

and (xj , yj), ŵ
j
i forms a smooth probability distribution over

the grid points. Thereby, the weighted sum of grid points
converges to continuous interpolation as the grid is refined,
i.e., in the limit as the grid resolution ∆x→ 0 (the distance
between grid points approaches zero), the discrete weighted
sum can be approximated by an integral over a continuous
domain. The weighted average becomes

x̂j =

∫
gx (g) · w (g, xj , yj) dg, (11)

where g is a continuous variable representing the position
on the grid, and w (g, xj , yj ) is a smooth weight function
based on the distance to the selected point (xj , yj).

4.2. LLaVA Encoder

To encode image and text features in parallel, we follow the
approach in works [15, 42] and instantiate GT with LLaVA
[21]. Specifically, GT consists of a CLIP [30] model for
processing image features and a LLaMA [37] model for
processing text features. First, the CLIP model convolves
ximg into Nt image patches, each of which is then encoded
by a series of stacked vision transformers. Next, these image
embeddings are projected via MLPs to the same dimension
as the text features and embedded into the text instructions
xtxt before being fed into the LLaMA, large language model.
Note that the parameters of GT are frozen. We utilize LoRA
[9] for efficient fine-tuning as work [15].

4.3. SAM Mask Decoder

To decode the segmentation mask based on the text instruc-
tions xtxt, we deploy SAM [14] model as the visual back-
bone [42]. First, the SAM model uses a prompt encoder to
project sparse embeddings, w.r.t. h(lk)

seg ,P as queries. Also,
the SAM image encoder, composed of a series of vision trans-
formers, encodes visual embeddings of ximg as keys. Next,
queries and keys interact through 2 layers of the TwoWayAt-
tention Block before finally being decoded into the mask.

4.4. Training Objectives

To infuse segmentation capabilities into the LMMs Gθ, we
jointly optimize the text generation loss Ltxt in GT , and the
segmentation mask loss Lmask in GV [15, 42]. Specifically,

Algorithm 1 Similarity as Points Algorithm

Require:
S is the similarity score between each image token and
the <SEG> token obtained in Eq. (5), where S ∈ RNt ,
Nt denotes the number of image tokens;
I+ is the indices of positive points determined by a
threshold tpos,I− is the indices of negative points with
a threshold of tneg, I0 stands for the indices of neutral
points. I = I+ ∪ I− ∪ I0;
g is the set of grid points, g = [h] × [w], where [h] =
{1, 2, ..., h} and [w] = {1, 2, ..., w}. hw denote the raw
image ximg dimension. gx and gy are the coordinates
of grid points along x-axis, y-axis.

Ensure:
Selected points and labels: P = ∅, labels = [−1]|I|

1: S[0,1] ← S, µ = E
[
S[0,1]

]
, σ2 = Var

[
S[0,1]

]
2: tpos = µ+ σ · ε, tneg = µ− σ · ε, ε = 0.5
3: I+ = {j | Sj ≥ tpos}, I− = {j |Sj ≤ tneg}
4: α = w

⌊
√
Nt⌋

, β = h
⌊
√
Nt⌋

5: for each index j in I do
6: xj = min ((j mod w + 0.5) · α,w − 1)
7: yj = min ((j ÷ w + 0.5) · β, h− 1)

8: dji =∥(gx,i,gy,i)− (xj , yj)∥2 ,∀i ∈ g

9: ŵj
i =

exp(−dj
i)·pi

Σi′ exp(−dj

i′)·pi′
, pi =

exp(Si)
Σi′ exp(Si′ )

,∀i ∈ g

10: x̂j =
h×w

Σ
i=1

gx,i · ŵj
i , ŷj =

h×w

Σ
i=1

gy,i · ŵj
i

11: P ← P ∪ (x̂j , ŷj)
12: if j ∈ I+, labelsj = 1, if j ∈ I−, labelsj = 0
13: end for
14: return P , labels

we use cross-entropy loss for Ltxt, pixel-wise binary cross-
entropy (BCE) loss and DICE loss for Lmask as

Ltxt = Lce(ŷtxt,ytxt),

Lmask = λbceLbce(M̂,M) + λdiceLdice(M̂,M),
(12)

where λbce and λdice are the loss weights, ytxt and M are
the ground-truth targets. The overall objective L aggregates
those losses in Eq. (12), weighted by λtxt and λmask as

L = λtxtLtxt + λmaskLmask. (13)

5. Experiment
5.1. Experimental Setting
Network Architecture. We employ LLaVA 1.5-7B [21]
as the base language model GT and the ViT-H SAM [14]
as the visual backbone GV . For image encoding, we adopt
the clip-vit-large-patch14-336, which takes 336×336 pixel
images as input. The projection layer γ consists of a series of
stacked MLPs with channel dimensions [512, 4096, 4096].
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Table 2. Comparisons of the state-of-the-art reasoning segmentation results on ReasonSeg dataset. * means results are reproduced by the
official model. ‘ft’ denotes using 239 reasoning segmentation samples to fine-tune the model.

Method
val test

overall short query long query overall
gIoU cIoU gIoU cIoU gIoU cIoU gIoU cIoU

X-Decoder [50] 22.6 17.9 20.4 11.6 22.2 17.5 21.7 16.3
Grounded-SAM [23] 26.0 14.5 17.8 10.8 22.4 18.6 21.3 16.4
SEEM [51] 25.5 21.2 20.1 11.5 25.6 20.8 24.3 18.7
OVSeg [18] 28.5 18.6 18.0 15.5 28.7 22.5 26.1 20.8
GRES [19] 22.4 19.9 17.6 15.0 22.6 23.8 21.3 22.0
*SESAME [42] 34.8 39.1 28.3 27.6 31.6 32.7 30.5 30.4
LLaVAv1.5-7B + OVSeg [15] 38.2 23.5 24.2 18.7 44.6 37.1 39.7 31.8
LISA-7B [15] 52.9 54.0 40.6 40.6 49.4 51.0 47.3 48.4
LISA-7B-LLaVAv1.5 (ft) [15] 61.3 62.9 48.3 46.3 57.9 59.7 55.6 56.9
READ-7B-LLaVAv1.5 (ft) 59.8 67.6 47.0 44.4 60.0 63.1 56.8 59.0

Implementation Details. We train on 4 NVIDIA 24GB
3090 GPUs for 20 epochs around 24 hours. We deploy
DeepSpeed [33] engine for distributed training, with a batch
size per device of 2 and, a gradient accumulation step of
10. The AdamW [25] optimizer is initialized with a learning
rate of 0.0003 and no weight decay (set to 0). The learning
rate is updated by the WarmupDecayLR scheduler, with 100
warmup iterations. The weights for Lmask and Ltxt are set
to 1.0, and the BCE loss weight λbce is set to 2.0 and the
DICE loss weight λdice to 0.5 by default. Each image is
randomly assigned up to 3 categories before being decorated
with a question-and-answer template.

Datasets. We follow prior work LISA [15] to organize
data structure, which typically consists of three types of
datasets: (1) As for semantic segmentation dataset, we
use ADE20K [48] and COCO-Stuff [3], PACO-LVIS [31],
and PASCAL-Part [5]; (2) As for referring segmentation
dataset, we use refCLEF, refCOCO, refCOCO+ [11], ref-
COCOg [27], and ReasonSeg [15]; (3) As for the visual
question answering (VQA) dataset, we use LLaVA-Instruct-
150k for LLaVA v1.5 [21]. Also, to teach READ to over-
come false premises, we include FP-RefCOCO(+/g) [42],
R-RefCOCO [41] for false premises assessment.

Evaluation Metrics. We adhere to the practices estab-
lished in prior works [11, 15, 27] by employing two evalua-
tion metrics: gIoU and cIoU. The gIoU metric is calculated
as the mean of the Intersection-over-Union (IoU) values
across all individual images, and cIoU is computed by the
cumulative intersection across the cumulative union.

5.2. Results on ReasonSeg Dataset

Comparison with State-of-the-Arts. To evaluate the per-
formance of READ on the ReasonSeg dataset, we use train
split for training and validate the performance on val set and
test set. Table 3 reveals that our READ model achieves signif-
icant performance gains in both gIoU and cIoU scores, partic-
ularly in the more challenging long query scenarios. Specifi-
cally, the READ-7B outperforms LISA-7B-LLaVAv1.5 on
the ReasonSeg dataset, with a 4.7% higher cIoU on the val
set (67.6%vs.62.9%) and a 2.1% improvement in the overall

test set (59.0%vs.56.9%). Also, the READ-13B shows a
0.6% advantage (62.8%vs.62.2%) , while in the short query
subset, it has a 3.1% lead (53.7%vs.50.6%). Overall, READ
consistently surpasses LISA-7B(13B)-LLaVAv1.5 by up to
4.7% across different subsets. This validates the effective-
ness of our approach in handling complex reasoning tasks
and generating accurate segmentation masks.

Table 3. Comparisons of the state-of-the-art results on ReasonSeg
test split using LLaVA 1.5-13B [20] as the base language model.

Method short query long query overall
gIoU cIoU gIoU cIoU gIoU cIoU

LISA-13B-LLaVA1.5 (ft) [15] 55.4 50.6 63.2 65.3 61.3 62.2
READ-13B-LLaVAv1.5 (ft) 55.4 53.7 64.4 65.1 62.2 62.8

5.3. Results on RefCOCO(+/g) Dataset

Comparison with State-of-the-Arts. To demonstrate the
efficacy of the proposed READ in the referring segmenta-
tion task, we conduct a comparative analysis with the ex-
isting state-of-the-art method, as detailed in Table 4. Our
evaluation encompasses the refCOCO, refCOCO+, and ref-
COCOg val split and test split. The outcomes reveal that our
model outperforms existing methods across various refer-
ring segmentation tasks. Specifically, READ achieves 3.2%
higher cIoU on refCOCO val (78.1%vs.74.9%) and 2.4%
higher on refCOCO+ val set (68.4%vs.66.0%). On the re-
fCOCOg set, READ shows an advantage of 2.2% higher
on val(U) (70.1%vs.67.9%) and 0.8% higher on test(U)
(71.4%vs.70.6%). Overall, READ consistently performs
better or on par than LISA-7B across all subsets.

5.4. Results on FP-RefCOCO(+/g) Dataset

Comparison with State-of-the-Arts. To validate whether
READ can overcome false premises, we assess its generation
ability on augmented FP-RefCOCO(+/g) dataset. Given that
LISA [15] is trained on positive samples only, in a fashion
which always encourages the model to output mask, even if
the object described in the query does not actually exist. As a
result, LISA suffers from catastrophic forgetting of previous
skills after fine-tuning [42]. We follow SESAME [42], using
see scores for the binary classification accuracy and cIoU
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Figure 3. Visual comparison among READ (ours) and prior works on ReasonSeg val split. Refer to Appendix D for more illustrations.

for the segment capability. Table 5 shows that READ excels
SESAME [42] in the “see” task across all datasets. Specifi-
cally, READ improves by 3.03% on FP-RefCOCO, 3.51%
on FP-RefCOCO+, and 2.89% on FP-RefCOCOg. For the
“segment” task, READ edges out SESAME, with a 3.57%
advantage on FP-RefCOCO (61.50%vs.57.93%), 3.73%
on FP-RefCOCO+ (54.54%vs.50.81%), and 2.33% on FP-
RefCOCOg (56.12%vs.53.79%). This indicates READ’s
capability in detecting the existence of objects while gen-
erating segmentation masks even under false premises.

Table 4. Comparisons of the state-of-the-art referring segmentation
cIoU on RefCOCO(+/g) dataset.

Method refCOCO refCOCO+ refCOCOg
val testA testB val testA testB val(U) test(U)

MCN [26] 62.4 64.2 59.7 50.6 55.0 44.7 49.2 49.4
VLT [6] 67.5 70.5 65.2 56.3 61.0 50.1 55.0 57.7
CRIS [40] 70.5 73.2 66.1 62.3 68.1 53.7 59.9 60.4
LAVT [45] 72.7 75.8 68.8 62.1 68.4 55.1 61.2 62.1
X-Decoder [50] - - - - - - 64.6 -
ReLA [19] 73.8 76.5 70.2 66.0 71.0 57.7 65.0 66.0
SEEM [51] - - - - - - 65.7 -
SESAME [42] 74.7 - - 64.9 - - 66.1 -
LISA-7B [15] 74.9 79.1 72.3 65.1 70.8 58.1 67.9 70.6
READ 78.1 80.2 73.2 68.4 73.7 60.4 70.1 71.4

5.5. Qualitative Results

In Fig. 3, READ qualitatively outperforms prior works, such
as LISA [15] and SESAME [42] in reasoning segmenta-
tion. Remarkably, READ is capable of handling fine-grained
visual grounding tasks, as illustrated in the 2nd row.

5.6. Ablation Study

In this section, we conduct an ablation study to analyze the
contribution of each component. We report the performance
of gIoU and cIoU of val split on ReasonSeg dataset.
Effect of similarity as point. To evaluate the contribution
of each component within the SasP module, we conduct
ablation experiments focusing on three key components:

Table 5. Comparisons of the state-of-the-art “see” and “segment”
results on augmented FP-refcoco(+/g) val split. Numbers of LISA,
Cascading, and SESAME are cited from [42]. “FP” is the abbrevia-
tion for False Premise, which denotes a query for an object that is
absent from the provided image.

Method FP-RefCOCO FP-RefCOCO+ FP-RefCOCOg
See Segment See Segment See Segment

LISA-7B [15] 51.36 44.00 51.32 39.62 51.25 39.64
Cascading [42] 75.59 55.18 75.03 48.64 76.07 49.98
SESAME [42] 79.84 57.93 80.00 50.81 81.78 53.79
READ 82.87 61.50 83.51 54.54 84.67 56.12

the <SEG>prompt, Pprompt and PDtoC. In Table 6, Pprompt
significantly boosts the performace of using <SEG>prompt
only. Specifically, the gIoU score increases from 51.2%
to 56.4% when both prompts are used, and the cIoU score
increases from 57.6% to 64.6% which validates that each
component contributes crucially to the overall performance,
with the combined usage leading to the best results.

Table 6. Ablation study on similarity as points (SasP).

Exp. ID <SEG>prompt Pprompt PDtoC gIoU cIoU

1 ! 37.4 29.2
2 ! 51.2 57.6
3 ! ! 56.4 64.6
4 ! ! ! 59.8 67.6

6. Conclusion
In this paper, we first investigate how <SEG> token works,
and we have found that what <SEG> token contributes to is
the semantic similarity, akin to those of direct mentions in
texts and aligns these textual semantics with its visual space
upon our findings. We therefore present READ, to rectify
LMMs where to “attend” when reasoning interactively by
regarding similarity as points, which could be seamlessly
applied to existing <SEG>-like paradigms with negligible
efforts and boosts performance remarkably. For future work,
we aim to actively bridge the text vocabulary embedding
with its visual space by leveraging the above findings.
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Reasoning to Attend: Try to Understand How <SEG> Token Works
Supplementary Material

We provide supplementary material related to the main paper,
arranged as follows:
1. Additional implementation details (Appendix A)
2. Additional Analysis (Appendix B)
3. Additional ablation study (Appendix C)
4. Additional qualitative results (Appendix D)

A. Additional Implementation Details
A.1. Grid Search for Optimal Threshold

Given that the threshold for the foreground mask has a sig-
nificant impact on the IoU, to eliminate the bias introduced
by manually setting the threshold (e.g., 0.5), we perform a
grid search over the similarity map for each image with a
step size of 0.01 to identify the optimal foreground mask.
For each threshold t, we convert the similarity map into a
binary mask by applying

M̂ (x, y) =

{
1 if S (x, y) ≥ t

0 if S (x, y) < t
, (14)

where S (x, y) is the similarity score for each pixel at po-
sition (x, y), M̂ (x, y) is the binary mask at that pixel. We
calculate cIoU for all threshold values in the grid, and choose
the threshold t′ that maximizes the cIoU for the image

t′ = argmax
t

(cIoU (t)) . (15)

Once the optimal threshold is selected for each image, we
use it to generate the final binary masks for evaluation, which
ensures that the comparison is fair and threshold-invariant.

A.2. Model Architecture and Training

As for Reasoning segmentation, we trained two models:
READ-7B and READ-13B. For READ-7B, we initialize
the parameters using the released SESAME model [42] to
accelerate training, with the training dataset allocated in
a 10:1:1:1:1:10 ratio. We employ LoRA [8] for efficient
fine-tuning, using lora r = 8, and conduct end-to-end joint
training. For READ-13B, we train it from scratch, using
LLaVA 1.5-13B as the base model. Initially, we train it on
the full dataset in a 10:10:2:3:1:1 ratio for about 8 epochs,
and then fine-tune it with a ratio of 3:10:2:3:1:10, using a
learning rate of 0.0001 and lora r = 64. As for referring
segmentation, we maintain the same settings as those used
for READ-7B in Reasoning segmentation. All our code will
be publicly available at https://github.com/rui-qian/READ.

B. Additional Analysis
(1) Fig. 4 shows qualitative analysis of <SEG> token on Rea-
sonSeg val split. Points derived from (a) serve as prompt

with original SAM in (c). Similarity between <SEG> token
and image token embeddings stemming from the last hidden
layer are computed by Eq.(5), w.r.t. LLaVA encoder in (a)
and SAM decoder in (b). The consistency in (a), (b) indi-
cates that <SEG> token in LMMs learns semantics similar
to those of direct mention in texts, as observed in CLIP [30].
Note that 1st column in (b) shows failure cases, indicating
the existence of misalignment between the LLaVA encoder
in (a) and SAM decoder in (b). Such observation sheds light
on the interpretability of semantic alignment issues, where
the LLaVA encoder generates accurate textual responses
even in scenarios where the SAM decoder fails at segmen-
tation, when eliciting LISA [15] for reasoning explanations.
In future work, we aim to further investigate the underlying
connections behind this phenomenon. (2) Fig. 5 shows
qualitative analysis of Pprompt on ReasonSeg val split. We
first select several points with the highest similarity scores
as positives (red in (b)) and an equal number of points with
the lowest similarity scores as negatives (blue in (b)). These
points are then directly used as prompts, rather than the
<SEG> token, and input into the original SAM model to
generate the segmentation mask. Columns in (b) demon-
strate that only relying on the selected similarity points as
prompt can still generate a segmentation mask potentially.

C. Additional Ablation Study
Effect of points ratios. To explore how the ratios of posi-
tive, negative, and neutral points impact the performance of
READ, we vary the positive and negative thresholds (tpos
and tneg) as well as the number of points |P|. As the positive
sample ratio (tpos) increases, model performance improves,
particularly when fewer points are used (|P|= 10). Also,
increasing the number of points generally enhances perfor-
mance, with the most significant improvements observed at
|P|= 60, regardless of the tpos setting.

Table 7. Ablation study on points ratios.

tpos tneg

|P|=10 |P|=30 |P|=60

gIoU cIoU gIoU cIoU gIoU cIoU

0.8 0.2 58.94 65.16 59.75 67.62 59.71 68.17
0.7 0.3 58.48 64.00 58.82 65.32 59.20 67.70
0.6 0.4 58.59 64.27 58.66 65.00 58.93 66.69

D. Additional Qualitative Results
Fig. 7 shows the qualitative results of READ on ReasonSeg
val split. LISA and SESAME exhibit various defects to
some extent when handling the displayed cases, whereas
our approach delivers more desirable segmentation results.
Fig. 6 show qualitative results on FP-RefCOCO(+/g) val
split. Also, READ retains LLMs’ conversational ability
while performing segmentation tasks and can refuse to output
a mask when the queried object doesn’t exist.
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(a) <SEG>with LLaVA (b) <SEG> with SAM (c) Points as prompt with SAM

Figure 4. Qualitative analysis of <SEG> token on ReasonSeg val split. The 1st, 2nd, and 3rd columns of (a), (b), and (c) are LISA,
SESAME, and READ(Ours) for comparisons, respectively.

(b) Points as prompt with SAM(a) <SEG>with LLaVA
Figure 5. Qualitative analysis of Pprompt (points as prompt) on ReasonSeg val split. The 1st, 2nd, and 3rd columns of (a), (b) are LISA,
SESAME, and READ(Ours) for comparisons, respectively.
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Figure 6. Visualization on FP-RefCOCO(+/g) val split.
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Figure 7. Visual comparison among READ (ours) and prior works on ReasonSeg val split.
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